Source-level reasoning for quantitative information flow

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (May 22, 2024), p. n/a
Autor principal: Chen, Chris
Outros Autores: McIver, Annabelle, Morgan, Carroll
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3059655862
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3059655862 
045 0 |b d20240522 
100 1 |a Chen, Chris 
245 1 |a Source-level reasoning for quantitative information flow 
260 |b Cornell University Library, arXiv.org  |c May 22, 2024 
513 |a Working Paper 
520 3 |a We present a novel formal system for proving quantitative-leakage properties of programs. Based on a theory of Quantitative Information Flow (QIF) that models information leakage as a noisy communication channel, it uses "gain-functions" for the description and measurement of expected leaks. We use a small imperative programming language, augmented with leakage features, and with it express adversaries' activities in the style of, but more generally than, the Hoare triples or expectation transformers that traditionally express deterministic or probabilistic correctness but without information flow. The programs are annotated with "gain-expressions" that capture simple adversarial settings such as "Guess the secret in one try." but also much more general ones; and our formal syntax and logic -based framework enables us to transform such gain-expressions that apply after a program has finished to ones that equivalently apply before the program has begun. In that way we enable a formal proof-based reasoning system for QIF at the source level. We apply it to the %programming language we have chosen, and demonstrate its effectiveness in a number of small but sometimes intricate situations. 
653 |a Programming languages 
653 |a Information flow 
653 |a Imperative programming 
653 |a Leakage 
653 |a Reasoning 
700 1 |a McIver, Annabelle 
700 1 |a Morgan, Carroll 
773 0 |t arXiv.org  |g (May 22, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3059655862/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.13416