A novel modified bat algorithm to improve the spatial geothermal mapping using discrete geodata in Catalonia-Spain

Shranjeno v:
Bibliografske podrobnosti
izdano v:Modeling Earth Systems and Environment vol. 10, no. 3 (Jun 2024), p. 4415
Glavni avtor: Mirfallah Lialestani, Seyed Poorya
Drugi avtorji: Parcerisa, David, Himi, Mahjoub, Abbaszadeh Shahri, Abbas
Izdano:
Springer Nature B.V.
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3064391008
003 UK-CbPIL
022 |a 2363-6203 
022 |a 2363-6211 
024 7 |a 10.1007/s40808-024-01992-7  |2 doi 
035 |a 3064391008 
045 2 |b d20240601  |b d20240630 
100 1 |a Mirfallah Lialestani, Seyed Poorya  |u Universitat Politècnica de Catalunya, Department of Mining, Industrial and ICT Engineering, Manresa, Spain (GRID:grid.6835.8) (ISNI:0000 0004 1937 028X) 
245 1 |a A novel modified bat algorithm to improve the spatial geothermal mapping using discrete geodata in Catalonia-Spain 
260 |b Springer Nature B.V.  |c Jun 2024 
513 |a Journal Article 
520 3 |a Metaheuristic algorithms due to flexibility can be applied to a wide range of complex engineering optimization problems. The effectiveness, efficiency, and adaptability of such algorithms can significantly be enhanced through the modified variants. In this paper a novel modified bat algorithm (MoBA) using the concept of expectation value is proposed and evaluated using different benchmark functions, and then compared and ranked among other previously improved variants. Subsequently, the proposed MoBA was hybridized with a pretrained multitask adaptive deep learning model to generate 3D spatial subsurface mapping of geothermal temperatures in Catalonia, Spain. The success, effectiveness and superiority of the presented MoBA in compare with previously modified firefly algorithm was confirmed using different accuracy performance criteria by at least 1.71% improvement. 
651 4 |a Spain 
651 4 |a Catalonia Spain 
653 |a Mapping 
653 |a Algorithms 
653 |a Subsurface mapping 
653 |a Deep learning 
653 |a Adaptability 
653 |a Heuristic methods 
653 |a Effectiveness 
653 |a Power plants 
653 |a Emissions 
653 |a Optimization techniques 
653 |a Heat 
653 |a Research & development--R&D 
653 |a Geothermal power 
653 |a Climate change 
653 |a Industrial plant emissions 
653 |a Efficiency 
653 |a Greenhouse gases 
653 |a Fossil fuels 
653 |a Temperature 
653 |a Renewable resources 
653 |a Engineering 
653 |a Alternative energy sources 
653 |a Cost control 
653 |a Environmental 
700 1 |a Parcerisa, David  |u Universitat Politècnica de Catalunya, Department of Mining, Industrial and ICT Engineering, Manresa, Spain (GRID:grid.6835.8) (ISNI:0000 0004 1937 028X) 
700 1 |a Himi, Mahjoub  |u University of Barcelona, Department of Mineralogy, Petrology and Applied Geology, Barcelona, Spain (GRID:grid.5841.8) (ISNI:0000 0004 1937 0247) 
700 1 |a Abbaszadeh Shahri, Abbas  |u Bircham International University, Department of Engineering and Technology, Madrid, Spain (GRID:grid.472233.3) (ISNI:0000 0004 0616 1884) 
773 0 |t Modeling Earth Systems and Environment  |g vol. 10, no. 3 (Jun 2024), p. 4415 
786 0 |d ProQuest  |t Environmental Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3064391008/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3064391008/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch