Mixed-Precision Over-The-Air Federated Learning via Approximated Computing

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jun 4, 2024), p. n/a
Autor principal: Yuan, Jinsheng
Altres autors: Zhuangkun Wei, Guo, Weisi
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3065122851
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3065122851 
045 0 |b d20240604 
100 1 |a Yuan, Jinsheng 
245 1 |a Mixed-Precision Over-The-Air Federated Learning via Approximated Computing 
260 |b Cornell University Library, arXiv.org  |c Jun 4, 2024 
513 |a Working Paper 
520 3 |a Over-the-Air Federated Learning (OTA-FL) has been extensively investigated as a privacy-preserving distributed learning mechanism. Realistic systems will see FL clients with diverse size, weight, and power configurations. A critical research gap in existing OTA-FL research is the assumption of homogeneous client computational bit precision. Indeed, many clients may exploit approximate computing (AxC) where bit precisions are adjusted for energy and computational efficiency. The dynamic distribution of bit precision updates amongst FL clients poses an open challenge for OTA-FL, as is is incompatible in the wireless modulation superposition space. Here, we propose an AxC-based OTA-FL framework of clients with multiple precisions, demonstrating the following innovations: (i) optimize the quantization-performance trade-off for both server and clients within the constraints of varying edge computing capabilities and learning accuracy requirements, and (ii) develop heterogeneous gradient resolution OTA-FL modulation schemes to ensure compatibility with physical layer OTA aggregation. Our findings indicate that we can design modulation schemes that enable AxC based OTA-FL, which can achieve 50\% faster and smoother server convergence and a performance enhancement for the lowest precision clients compared to a homogeneous precision approach. This demonstrates the great potential of our AxC-based OTA-FL approach in heterogeneous edge computing environments. 
653 |a Performance enhancement 
653 |a Clients 
653 |a Servers 
653 |a Edge computing 
653 |a Federated learning 
653 |a Modulation 
700 1 |a Zhuangkun Wei 
700 1 |a Guo, Weisi 
773 0 |t arXiv.org  |g (Jun 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3065122851/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2406.03402