A comparative study of AI-human-made and human-made test forms for a university TESOL theory course

Guardado en:
Detalles Bibliográficos
Publicado en:Language Testing in Asia vol. 14, no. 1 (Dec 2024), p. 19
Autor principal: O, Kyung-Mi
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3065506961
003 UK-CbPIL
022 |a 2229-0443 
024 7 |a 10.1186/s40468-024-00291-3  |2 doi 
035 |a 3065506961 
045 2 |b d20241201  |b d20241231 
084 |a 243835  |2 nlm 
100 1 |a O, Kyung-Mi  |u Dongduk Women’s University, Seoul, South Korea (GRID:grid.412059.b) (ISNI:0000 0004 0532 5816) 
245 1 |a A comparative study of AI-human-made and human-made test forms for a university TESOL theory course 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a This study examines the efficacy of artificial intelligence (AI) in creating parallel test items compared to human-made ones. Two test forms were developed: one consisting of 20 existing human-made items and another with 20 new items generated with ChatGPT assistance. Expert reviews confirmed the content parallelism of the two test forms. Forty-three university students then completed the 40 test items presented randomly from both forms on a final test. Statistical analyses of student performance indicated comparability between the AI-human-made and human-made test forms. Despite limitations such as sample size and reliance on classical test theory (CTT), the findings suggest ChatGPT’s potential to assist teachers in test item creation, reducing workload and saving time. These results highlight ChatGPT’s value in educational assessment and emphasize the need for further research and development in this area. 
653 |a Human-computer interaction 
653 |a College students 
653 |a Artificial intelligence 
653 |a Language 
653 |a Students 
653 |a Verbal communication 
653 |a Quantitative psychology 
653 |a Classical test theory 
653 |a Cognitive models 
653 |a Listening 
653 |a Natural language processing 
653 |a Automation 
653 |a Research & development--R&D 
653 |a Feedback 
653 |a Learning 
653 |a Teachers 
653 |a Chatbots 
653 |a Cognition & reasoning 
653 |a Tests 
653 |a Linguistics education 
653 |a TESOL 
653 |a Comparative studies 
653 |a Efficacy 
653 |a Humans 
653 |a Comparative analysis 
653 |a Oral Language 
653 |a Test Theory 
653 |a Literature Reviews 
653 |a Item Banks 
653 |a Language Skills 
653 |a Test Format 
653 |a Computers 
653 |a English (Second Language) 
653 |a Language Tests 
653 |a Test Items 
653 |a Teacher Made Tests 
653 |a Feedback (Response) 
653 |a Psychometrics 
653 |a Educational Assessment 
653 |a Comparative Education 
653 |a Language Processing 
653 |a Learner Engagement 
653 |a Logical Thinking 
773 0 |t Language Testing in Asia  |g vol. 14, no. 1 (Dec 2024), p. 19 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3065506961/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3065506961/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch