Efficient Corrections for Standardized Person-Fit Statistics

Guardado en:
Detalles Bibliográficos
Publicado en:Psychometrika vol. 89, no. 2 (Jun 2024), p. 569
Autor principal: Gorney, Kylie
Otros Autores: Sinharay, Sandip, Eckerly, Carol
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3066166501
003 UK-CbPIL
022 |a 0033-3123 
022 |a 1860-0980 
024 7 |a 10.1007/s11336-024-09960-x  |2 doi 
035 |a 3066166501 
045 2 |b d20240601  |b d20240630 
084 |a 69716  |2 nlm 
100 1 |a Gorney, Kylie  |u Michigan State University, Department of Counseling, Educational Psychology, and Special Education, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2195 6501) 
245 1 |a Efficient Corrections for Standardized Person-Fit Statistics 
260 |b Springer Nature B.V.  |c Jun 2024 
513 |a Journal Article 
520 3 |a Many popular person-fit statistics belong to the class of standardized person-fit statistics, T, and are assumed to have a standard normal null distribution. However, in practice, this assumption is incorrect since T is computed using (a) an estimated ability parameter and (b) a finite number of items. Snijders (Psychometrika 66(3):331–342, 2001) developed mean and variance corrections for T to account for the use of an estimated ability parameter. Bedrick (Psychometrika 62(2):191–199, 1997) and Molenaar and Hoijtink (Psychometrika 55(1):75–106, 1990) developed skewness corrections for T to account for the use of a finite number of items. In this paper, we combine these two lines of research and propose three new corrections for T that simultaneously account for the use of an estimated ability parameter and the use of a finite number of items. The new corrections are efficient in that they only require the analysis of the original data set and do not require the simulation or analysis of any additional data sets. We conducted a detailed simulation study and found that the new corrections are able to control the Type I error rate while also maintaining reasonable levels of power. A real data example is also included. 
653 |a Statistical analysis 
653 |a Skewness 
653 |a Simulation 
653 |a Statistics 
653 |a Datasets 
653 |a Normal distribution 
700 1 |a Sinharay, Sandip  |u Educational Testing Service, Princeton, USA (GRID:grid.286674.9) (ISNI:0000 0004 1936 9051) 
700 1 |a Eckerly, Carol  |u Educational Testing Service, Princeton, USA (GRID:grid.286674.9) (ISNI:0000 0004 1936 9051) 
773 0 |t Psychometrika  |g vol. 89, no. 2 (Jun 2024), p. 569 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3066166501/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3066166501/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch