Radiomics model based on contrast-enhanced computed tomography imaging for early recurrence monitoring after radical resection of AFP-negative hepatocellular carcinoma

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:BMC Cancer vol. 24 (2024), p. 1
מחבר ראשי: Xuanzhi Yan
מחברים אחרים: Li, Yicheng, Wanying Qin, Liao, Jiayi, Fan, Jiaxing, Xie, Yujin, Wang, Zewen, Li, Siming, Liao, Weijia
יצא לאור:
Springer Nature B.V.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3066880887
003 UK-CbPIL
022 |a 1471-2407 
024 7 |a 10.1186/s12885-024-12436-x  |2 doi 
035 |a 3066880887 
045 2 |b d20240101  |b d20241231 
084 |a 58465  |2 nlm 
100 1 |a Xuanzhi Yan 
245 1 |a Radiomics model based on contrast-enhanced computed tomography imaging for early recurrence monitoring after radical resection of AFP-negative hepatocellular carcinoma 
260 |b Springer Nature B.V.  |c 2024 
513 |a Journal Article 
520 3 |a BackgroundAlthough radical surgical resection is the most effective treatment for hepatocellular carcinoma (HCC), the high rate of postoperative recurrence remains a major challenge, especially in patients with alpha-fetoprotein (AFP)-negative HCC who lack effective biomarkers for postoperative recurrence surveillance. Emerging radiomics can reveal subtle structural changes in tumors by analyzing preoperative contrast-enhanced computer tomography (CECT) imaging data and may provide new ways to predict early recurrence (recurrence within 2 years) in AFP-negative HCC. In this study, we propose to develop a radiomics model based on preoperative CECT to predict the risk of early recurrence after surgery in AFP-negative HCC.Patients and methodsPatients with AFP-negative HCC who underwent radical resection were included in this study. A computerized tool was used to extract radiomic features from the tumor region of interest (ROI), select the best radiographic features associated with patient’s postoperative recurrence, and use them to construct the radiomics score (RadScore), which was then combined with clinical and follow-up information to comprehensively evaluate the reliability of the model.ResultsA total of 148 patients with AFP-negative HCC were enrolled in this study, and 1,977 radiographic features were extracted from CECT, 2 of which were the features most associated with recurrence in AFP-negative HCC. They had good predictive ability in both the training and validation cohorts, with an area under the ROC curve (AUC) of 0.709 and 0.764, respectively. Tumor number, microvascular invasion (MVI), AGPR and radiomic features were independent risk factors for early postoperative recurrence in patients with AFP-negative HCC. The AUCs of the integrated model in the training and validation cohorts were 0.793 and 0.791, respectively. The integrated model possessed the clinical value of predicting early postoperative recurrence in patients with AFP-negative HCC according to decision curve analysis, which allowed the classification of patients into subgroups of high-risk and low-risk for early recurrence.ConclusionThe nomogram constructed by combining clinical and imaging features has favorable performance in predicting the probability of early postoperative recurrence in AFP-negative HCC patients, which can help optimize the therapeutic decision-making and prognostic assessment of AFP-negative HCC patients. 
653 |a Radiomics 
653 |a Patients 
653 |a α-Fetoprotein 
653 |a Tomography 
653 |a Medical prognosis 
653 |a Hepatocellular carcinoma 
653 |a Blood diseases 
653 |a Surgery 
653 |a Computed tomography 
653 |a Risk factors 
653 |a Biomarkers 
653 |a Microvasculature 
653 |a Image processing 
653 |a Tumors 
653 |a Liver cancer 
653 |a Medical imaging 
653 |a Ultrasonic imaging 
653 |a Decision making 
700 1 |a Li, Yicheng 
700 1 |a Wanying Qin 
700 1 |a Liao, Jiayi 
700 1 |a Fan, Jiaxing 
700 1 |a Xie, Yujin 
700 1 |a Wang, Zewen 
700 1 |a Li, Siming 
700 1 |a Liao, Weijia 
773 0 |t BMC Cancer  |g vol. 24 (2024), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3066880887/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3066880887/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3066880887/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch