Low-power Ship Detection in Satellite Images Using Neuromorphic Hardware

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jun 17, 2024), p. n/a
Autor principal: Lenz, Gregor
Otros Autores: McLelland, Douglas
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3069348111
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3069348111 
045 0 |b d20240617 
100 1 |a Lenz, Gregor 
245 1 |a Low-power Ship Detection in Satellite Images Using Neuromorphic Hardware 
260 |b Cornell University Library, arXiv.org  |c Jun 17, 2024 
513 |a Working Paper 
520 3 |a Transmitting Earth observation image data from satellites to ground stations incurs significant costs in terms of power and bandwidth. For maritime ship detection, on-board data processing can identify ships and reduce the amount of data sent to the ground. However, most images captured on board contain only bodies of water or land, with the Airbus Ship Detection dataset showing only 22.1\% of images containing ships. We designed a low-power, two-stage system to optimize performance instead of relying on a single complex model. The first stage is a lightweight binary classifier that acts as a gating mechanism to detect the presence of ships. This stage runs on Brainchip's Akida 1.0, which leverages activation sparsity to minimize dynamic power consumption. The second stage employs a YOLOv5 object detection model to identify the location and size of ships. This approach achieves a mean Average Precision (mAP) of 76.9\%, which increases to 79.3\% when evaluated solely on images containing ships, by reducing false positives. Additionally, we calculated that evaluating the full validation set on a NVIDIA Jetson Nano device requires 111.4 kJ of energy. Our two-stage system reduces this energy consumption to 27.3 kJ, which is less than a fourth, demonstrating the efficiency of a heterogeneous computing system. 
653 |a Onboard data processing 
653 |a Power management 
653 |a Data processing 
653 |a Object recognition 
653 |a Energy consumption 
653 |a Satellites 
653 |a Power consumption 
653 |a Ships 
653 |a Ground stations 
653 |a Satellite imagery 
700 1 |a McLelland, Douglas 
773 0 |t arXiv.org  |g (Jun 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3069348111/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2406.11319