Enhancing database performance through SQL optimization, parallel processing and GPU integration

Shranjeno v:
Bibliografske podrobnosti
izdano v:BIO Web of Conferences vol. 113 (2024), p. n/a
Glavni avtor: Nuriev, Marat
Drugi avtorji: Zaripova, Rimma, Sinicin, Alexey, Chupaev, Andrey, Shkinderov, Maksim
Izdano:
EDP Sciences
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3069606031
003 UK-CbPIL
022 |a 2273-1709 
022 |a 2117-4458 
024 7 |a 10.1051/bioconf/202411304010  |2 doi 
035 |a 3069606031 
045 2 |b d20240101  |b d20241231 
084 |a 268328  |2 nlm 
100 1 |a Nuriev, Marat 
245 1 |a Enhancing database performance through SQL optimization, parallel processing and GPU integration 
260 |b EDP Sciences  |c 2024 
513 |a Conference Proceedings 
520 3 |a This article delves into the cutting-edge methodologies revolutionizing database management systems (DBMS) through the lens of SQL query optimization, parallel processing, and the integration of graphics processing units (GPUs). As the digital world grapples with ever-increasing volumes of data, the efficiency, speed, and scalability of database systems have never been more critical. The first section of the article focuses on SQL query optimization, highlighting strategies to refine query performance and reduce resource consumption, thus enhancing application responsiveness and efficiency. The discourse then transitions to parallel processing in databases, an approach that leverages multiple processors or distributed systems to significantly boost data processing capabilities. This segment explores the advantages of parallelism in managing large datasets and complex operations, addressing the challenges and the impact on system scalability and fault tolerance. Furthermore, the article examines the innovative application of GPUs in database management, a development that offers profound speedups for analytical and machine learning tasks within DBMS. Despite the complexities and the initial investment required, the utilization of GPUs is portrayed as a game-changer in processing largescale data, thanks to their highly parallel architecture and computational prowess. Together, these advancements signify a transformative shift in database technologies, promising to address the challenges of modern data management with unprecedented efficiency and scalability. This article not only elucidates these sophisticated technologies but also provides a glimpse into the future of database systems, where optimization, parallel processing, and GPU integration play pivotal roles in navigating the data-driven demands of the contemporary digital landscape. 
653 |a Databases 
653 |a Data base management systems 
653 |a Data management 
653 |a Parallel processing 
653 |a Data processing 
653 |a Queries 
653 |a Graphics processing units 
653 |a Fault tolerance 
653 |a Optimization 
653 |a Task complexity 
653 |a Efficiency 
653 |a Resource consumption 
653 |a Machine learning 
653 |a Cognitive tasks 
653 |a Query processing 
653 |a Integration 
653 |a Management systems 
653 |a Query languages 
653 |a Economic 
700 1 |a Zaripova, Rimma 
700 1 |a Sinicin, Alexey 
700 1 |a Chupaev, Andrey 
700 1 |a Shkinderov, Maksim 
773 0 |t BIO Web of Conferences  |g vol. 113 (2024), p. n/a 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3069606031/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3069606031/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch