A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Jun 8, 2024), p. n/a
Yazar: Farzana Yasmin Ahmad
Diğer Yazarlar: Vanamala Venkataswamy, Fox, Geoffrey
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3070881082
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3070881082 
045 0 |b d20240608 
100 1 |a Farzana Yasmin Ahmad 
245 1 |a A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation 
260 |b Cornell University Library, arXiv.org  |c Jun 8, 2024 
513 |a Working Paper 
520 3 |a The pursuit of understanding fundamental particle interactions has reached unparalleled precision levels. Particle physics detectors play a crucial role in generating low-level object signatures that encode collision physics. However, simulating these particle collisions is a demanding task in terms of memory and computation which will be exasperated with larger data volumes, more complex detectors, and a higher pileup environment in the High-Luminosity LHC. The introduction of "Fast Simulation" has been pivotal in overcoming computational bottlenecks. The use of deep-generative models has sparked a surge of interest in surrogate modeling for detector simulations, generating particle showers that closely resemble the observed data. Nonetheless, there is a pressing need for a comprehensive evaluation of their performance using a standardized set of metrics. In this study, we conducted a rigorous evaluation of three generative models using standard datasets and a diverse set of metrics derived from physics, computer vision, and statistics. Furthermore, we explored the impact of using full versus mixed precision modes during inference. Our evaluation revealed that the CaloDiffusion and CaloScore generative models demonstrate the most accurate simulation of particle showers, yet there remains substantial room for improvement. Our findings identified areas where the evaluated models fell short in accurately replicating Geant4 data. 
653 |a Particle physics 
653 |a Detectors 
653 |a Simulation 
653 |a Particle interactions 
653 |a Luminosity 
653 |a Physics 
653 |a Computer vision 
653 |a Performance evaluation 
653 |a Large Hadron Collider 
653 |a Showers 
653 |a Particle collisions 
653 |a Elementary particles 
700 1 |a Vanamala Venkataswamy 
700 1 |a Fox, Geoffrey 
773 0 |t arXiv.org  |g (Jun 8, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3070881082/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2406.12898