Hyperparameter Optimization of the Machine Learning Model for Distillation Processes

Gardado en:
Detalles Bibliográficos
Publicado en:International Journal of Intelligent Systems vol. 2024 (2024)
Autor Principal: Oh, Kwang Cheol
Outros autores: Kwon, Hyukwon, Sun Yong Park, Kim, Seok Jun, Kim, Junghwan, Kim, DaeHyun
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3071322032
003 UK-CbPIL
022 |a 0884-8173 
022 |a 1098-111X 
024 7 |a 10.1155/2024/5564380  |2 doi 
035 |a 3071322032 
045 2 |b d20240101  |b d20241231 
084 |a 163929  |2 nlm 
100 1 |a Oh, Kwang Cheol  |u Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea 
245 1 |a Hyperparameter Optimization of the Machine Learning Model for Distillation Processes 
260 |b John Wiley & Sons, Inc.  |c 2024 
513 |a Journal Article 
520 3 |a This study was conducted to enhance the efficiency of chemical process systems and address the limitations of conventional methods through hyperparameter optimization. Chemical processes are inherently continuous and nonlinear, making stable operation challenging. The efficiency of processes often varies significantly with the operator’s level of expertise, as most tasks rely on experience. To move beyond the constraints of traditional simulation approaches, a new machine learning-based simulation model was developed. This model utilizes a recurrent neural network (RNN) algorithm, which is ideal for analyzing time-series data from chemical process systems, presenting new possibilities for applications in systems with special chemical reactions or those that are continuous and complex. Hyperparameters were optimized using a grid search method, and optimal results were confirmed when the model was applied to an actual distillation process system. By proposing a methodology that utilizes machine learning for the optimization of chemical process systems, this research contributes to solving new problems that were previously unaddressed. Based on these results, the study demonstrates that a machine learning simulation model can be effectively applied to continuous chemical process systems. This application enables the derivation of unique hyperparameters tailored to the specificities of a limited control volume system. 
653 |a Big Data 
653 |a Machine learning 
653 |a Simulation 
653 |a Chemical reactions 
653 |a Artificial intelligence 
653 |a Simulation models 
653 |a Data mining 
653 |a Optimization 
653 |a Neural networks 
653 |a Process controls 
653 |a Recurrent neural networks 
653 |a Variables 
653 |a Distillation 
653 |a Feature selection 
653 |a Algorithms 
653 |a Data collection 
653 |a Methods 
653 |a System effectiveness 
653 |a Data compression 
653 |a Computer simulation 
700 1 |a Kwon, Hyukwon  |u Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea; Green Materials & Processes Group, Korea Institute of Industrial Technology, 55 Jongga-ro, Jung-gu, Ulsan 44413, Republic of Korea 
700 1 |a Sun Yong Park  |u Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea 
700 1 |a Kim, Seok Jun  |u Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea 
700 1 |a Kim, Junghwan  |u Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea 
700 1 |a Kim, DaeHyun  |u Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea 
773 0 |t International Journal of Intelligent Systems  |g vol. 2024 (2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3071322032/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3071322032/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3071322032/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch