Advanced Framework for Multi-Modal Healthcare Data Integration: Leveraging HPC with GPU Computing and CNN Architecture in CDSS

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Electrical Systems vol. 20, no. 1s (2024), p. 1061
Hlavní autor: Kumar, Santosh
Další autoři: Imambi, S Sagar
Vydáno:
Engineering and Scientific Research Groups
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3073675755
003 UK-CbPIL
022 |a 1112-5209 
035 |a 3073675755 
045 2 |b d20240101  |b d20241231 
100 1 |a Kumar, Santosh  |u Research Scholar, Computer Science & Engineering, KL Education Foundation, (Deemed to be University), Vaddeswaram, Andhra Pradesh, India 
245 1 |a Advanced Framework for Multi-Modal Healthcare Data Integration: Leveraging HPC with GPU Computing and CNN Architecture in CDSS 
260 |b Engineering and Scientific Research Groups  |c 2024 
513 |a Journal Article 
520 3 |a In this study, we shall be looking at the challenges involved in integrating multi-modal healthcare data in the clinical decision support systems (CDSS). We propose the Automated Multi-Modal Data Integration (AMMI-CDSS) algorithm, which will utilize the latest high-performance computing (HPC) techniques such as the Convolutional Neural Network (CNN) architecture and the Graphics Processing Unit (GPU) computing to provide precise and rapid analysis. Which features will be extracted, multi-modal data will be merged, data will be prepared and algorithms developed in a distributed computing environment. We illustrate how AMMI-CDSS through the use of real world datasets such as wearable sensors data, medical imaging, genetic data, and electronic health records (EHRs), can improve the clinical decision support. By performing harmonization of the diverse data sources into a unique dataset after thorough data preprocessing and complex calculations, AMMI-CDSS provides the analysis with better quality and coherence. Our study allow us to make conclusion about how HPC-based CDSS models can be compared to conventional machine learning ones using their scalability and performance as key metrics. We enrich CDSS with the methodical framework for one-by-one testing and evaluation of proposed models and multi-modal healthcare data analysis. Future research might explore novel methods for integrating diverse types of healthcare data, as well as enhancing the НРС-based CDSS models by keeping them up-to-date. 
653 |a Data analysis 
653 |a Datasets 
653 |a Decision support systems 
653 |a Electronic health records 
653 |a Computer architecture 
653 |a Graphics processing units 
653 |a Health care 
653 |a Artificial neural networks 
653 |a Medical imaging 
653 |a Clinical decision making 
653 |a Algorithms 
653 |a Data integration 
653 |a Modal data 
653 |a Machine learning 
653 |a Distributed processing 
700 1 |a Imambi, S Sagar  |u Computer Science & Engineering, KL Education Foundation, (Deemed to be University), Vaddeswaram, Andhra Pradesh, India 
773 0 |t Journal of Electrical Systems  |g vol. 20, no. 1s (2024), p. 1061 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3073675755/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3073675755/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch