Optimal Day-Ahead Energy Scheduling of the Smart Distribution Electrical Grid Considering Hybrid Demand Management

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:Technology and Economics of Smart Grids and Sustainable Energy vol. 9, no. 2 (Dec 2024), p. 31
Foilsithe / Cruthaithe:
Springer Nature B.V.
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3074881757
003 UK-CbPIL
022 |a 2199-4706 
024 7 |a 10.1007/s40866-024-00212-6  |2 doi 
035 |a 3074881757 
045 2 |b d20241201  |b d20241231 
245 1 |a Optimal Day-Ahead Energy Scheduling of the Smart Distribution Electrical Grid Considering Hybrid Demand Management 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a The study presents a two-level multi-objective approach for energy scheduling in a smart distribution electrical grid. The proposed energy optimization strategy combines hybrid demand management at the upper level and multi-objective functions at the lower level. The multi-objective function in lower level is designed to minimize operational costs and enhance reliability. The upper-level demand management is optimized by taking into account price signals from the upstream grid. The hybrid demand management such as load shifting and load interruption are proposed as effective approaches for consumers. The energy scheduling in both levels by improved sunflower optimization (ISFO) algorithm is solved, and fuzzy approach based on linear programming technique for multidimensional analysis of preference (LINMAP) method is proposed for finding desired solution of the multi-objective function in lower-level. The effectiveness of the electrical grid is examined on the 69-bus distribution network through the utilization of day-ahead scheduling and incorporating findings from mathematical modeling. The results of the proposed problem with demand-side optimization lead to decreasing operation cost by 2.43% and enhancing reliability index by 0.6% compared to lack of demand-side optimization. 
653 |a Scheduling 
653 |a Linear programming 
653 |a Energy 
653 |a Demand 
653 |a Reliability 
653 |a Optimization 
653 |a Objective function 
653 |a Load shifting 
653 |a Algorithms 
653 |a Multiple objective analysis 
653 |a Mathematical models 
653 |a Economic 
773 0 |t Technology and Economics of Smart Grids and Sustainable Energy  |g vol. 9, no. 2 (Dec 2024), p. 31 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3074881757/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3074881757/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch