Evaluating Explainable Machine Learning Models for Clinicians

Uloženo v:
Podrobná bibliografie
Vydáno v:Cognitive Computation vol. 16, no. 4 (Jul 2024), p. 1436
Hlavní autor: Scarpato, Noemi
Další autoři: Nourbakhsh, Aria, Ferroni, Patrizia, Riondino, Silvia, Roselli, Mario, Fallucchi, Francesca, Barbanti, Piero, Guadagni, Fiorella, Zanzotto, Fabio Massimo
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3076132393
003 UK-CbPIL
022 |a 1866-9956 
022 |a 1866-9964 
024 7 |a 10.1007/s12559-024-10297-x  |2 doi 
035 |a 3076132393 
045 2 |b d20240701  |b d20240731 
100 1 |a Scarpato, Noemi  |u San Raffaele Roma Open University, Rome, Italy (GRID:grid.466134.2) (ISNI:0000 0004 4912 5648); Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Roma, Rome, Italy (GRID:grid.18887.3e) (ISNI:0000000417581884) 
245 1 |a Evaluating Explainable Machine Learning Models for Clinicians 
260 |b Springer Nature B.V.  |c Jul 2024 
513 |a Journal Article 
520 3 |a Gaining clinicians’ trust will unleash the full potential of artificial intelligence (AI) in medicine, and explaining AI decisions is seen as the way to build trustworthy systems. However, explainable artificial intelligence (XAI) methods in medicine often lack a proper evaluation. In this paper, we present our evaluation methodology for XAI methods using forward simulatability. We define the Forward Simulatability Score (FSS) and analyze its limitations in the context of clinical predictors. Then, we applied FSS to our XAI approach defined over an ML-RO, a machine learning clinical predictor based on random optimization over a multiple kernel support vector machine (SVM) algorithm. To Compare FSS values before and after the explanation phase, we test our evaluation methodology for XAI methods on three clinical datasets, namely breast cancer, VTE, and migraine. The ML-RO system is a good model on which to test our XAI evaluation strategy based on the FSS. Indeed, ML-RO outperforms two other base models—a decision tree (DT) and a plain SVM—in the three datasets and gives the possibility of defining different XAI models: TOPK, MIGF, and F4G. The FSS evaluation score suggests that the explanation method F4G for the ML-RO is the most effective in two datasets out of the three tested, and it shows the limits of the learned model for one dataset. Our study aims to introduce a standard practice for evaluating XAI methods in medicine. By establishing a rigorous evaluation framework, we seek to provide healthcare professionals with reliable tools for assessing the performance of XAI methods to enhance the adoption of AI systems in clinical practice. 
653 |a Machine learning 
653 |a Simulation 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Clinical medicine 
653 |a Support vector machines 
653 |a Decision making 
653 |a Effectiveness 
653 |a Causality 
653 |a Algorithms 
653 |a Migraine 
653 |a Performance evaluation 
653 |a Kernel functions 
653 |a Explainable artificial intelligence 
653 |a Decision trees 
700 1 |a Nourbakhsh, Aria  |u University of Rome Tor Vergata, Department of Enterprise Engineering, Rome, Italy (GRID:grid.6530.0) (ISNI:0000 0001 2300 0941) 
700 1 |a Ferroni, Patrizia  |u San Raffaele Roma Open University, Rome, Italy (GRID:grid.466134.2) (ISNI:0000 0004 4912 5648); Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Roma, Rome, Italy (GRID:grid.18887.3e) (ISNI:0000000417581884) 
700 1 |a Riondino, Silvia  |u University of Rome Tor Vergata, Department of Systems Medicine, Rome, Italy (GRID:grid.6530.0) (ISNI:0000 0001 2300 0941) 
700 1 |a Roselli, Mario  |u University of Rome Tor Vergata, Department of Systems Medicine, Rome, Italy (GRID:grid.6530.0) (ISNI:0000 0001 2300 0941) 
700 1 |a Fallucchi, Francesca  |u Guglielmo Marconi University, Rome, Italy (GRID:grid.440899.8) (ISNI:0000 0004 1780 761X) 
700 1 |a Barbanti, Piero  |u San Raffaele Roma Open University, Rome, Italy (GRID:grid.466134.2) (ISNI:0000 0004 4912 5648); IRCCS San Raffaele Roma, Headache and Pain Unit, Rome, Italy (GRID:grid.18887.3e) (ISNI:0000000417581884) 
700 1 |a Guadagni, Fiorella  |u San Raffaele Roma Open University, Rome, Italy (GRID:grid.466134.2) (ISNI:0000 0004 4912 5648); Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Roma, Rome, Italy (GRID:grid.18887.3e) (ISNI:0000000417581884) 
700 1 |a Zanzotto, Fabio Massimo  |u University of Rome Tor Vergata, Department of Enterprise Engineering, Rome, Italy (GRID:grid.6530.0) (ISNI:0000 0001 2300 0941) 
773 0 |t Cognitive Computation  |g vol. 16, no. 4 (Jul 2024), p. 1436 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3076132393/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3076132393/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3076132393/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch