Synthesis of Silicon and Germanium Oxide Nanostructures via Photonic Curing; a Facile Approach to Scale Up Fabrication

Gardado en:
Detalles Bibliográficos
Publicado en:ChemistryOpen vol. 13, no. 7 (Jul 2024)
Autor Principal: Khatoon, Najma
Outros autores: Subedi, Binod, Chrisey, Douglas B
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3076826995
003 UK-CbPIL
022 |a 2191-1363 
024 7 |a 10.1002/open.202300260  |2 doi 
035 |a 3076826995 
045 2 |b d20240701  |b d20240731 
084 |a 233130  |2 nlm 
100 1 |a Khatoon, Najma  |u Department of Physics and Engineering Physics, Tulane University, New Orleans 
245 1 |a Synthesis of Silicon and Germanium Oxide Nanostructures via Photonic Curing; a Facile Approach to Scale Up Fabrication 
260 |b John Wiley & Sons, Inc.  |c Jul 2024 
513 |a Journal Article 
520 3 |a Silicon and Germanium oxide (SiOx and GeOx) nanostructures are promising materials for energy storage applications due to their potentially high energy density, large lithiation capacity (~10X carbon), low toxicity, low cost, and high thermal stability. This work reports a unique approach to achieving controlled synthesis of SiOx and GeOx nanostructures via photonic curing. Unlike conventional methods like rapid thermal annealing, quenching during pulsed photonic curing occurs rapidly (sub-millisecond), allowing the trapping of metastable states to form unique phases and nanostructures. We explored the possible underlying mechanism of photonic curing by incorporating laws of photophysics, photochemistry, and simulated temperature profile of thin film. The results show that photonic curing of spray coated 0.1 M molarity Si and Ge Acetyl Acetate precursor solution, at total fluence 80 J cm−2 can yield GeOx and SiOx nanostructures. The as-synthesized nanostructures are ester functionalized due to photoinitiated chemical reactions in thin film during photonic curing. Results also showed that nanoparticle size changes from ~48 nm to ~11 nm if overall fluence is increased by increasing the number of pulses. These results are an important contribution towards large-scale synthesis of the Ge and Si oxide nanostructured materials which is necessary for next-generation energy storage devices. 
653 |a Silicon 
653 |a Thermal stability 
653 |a Toxicity 
653 |a Chemical reactions 
653 |a Glass substrates 
653 |a Nanostructured materials 
653 |a Nanoparticles 
653 |a Microemulsions 
653 |a Germanium oxides 
653 |a Temperature profiles 
653 |a Nanomaterials 
653 |a Batteries 
653 |a Thin films 
653 |a Energy storage 
653 |a Graphene 
653 |a Transistors 
653 |a Sintering 
653 |a Photochemistry 
653 |a Scanning electron microscopy 
653 |a Fluence 
653 |a Germanium 
653 |a Surface chemistry 
653 |a Nanostructure 
653 |a Temperature 
653 |a Sensors 
653 |a Curing 
653 |a Chemical vapor deposition 
653 |a Optical properties 
653 |a Metastable state 
653 |a Photonics 
653 |a Molecular structure 
653 |a Quantum dots 
653 |a Light 
653 |a Morphology 
700 1 |a Subedi, Binod  |u Department of Physics and Engineering Physics, Tulane University, New Orleans 
700 1 |a Chrisey, Douglas B  |u Department of Physics and Engineering Physics, Tulane University, New Orleans 
773 0 |t ChemistryOpen  |g vol. 13, no. 7 (Jul 2024) 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3076826995/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3076826995/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3076826995/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch