i-PI 3.0: a flexible and efficient framework for advanced atomistic simulations

Saved in:
Bibliographic Details
Published in:arXiv.org (Jul 10, 2024), p. n/a
Main Author: Litman, Yair
Other Authors: Kapil, Venkat, Feldman, Yotam M Y, Tisi, Davide, Begušić, Tomislav, Fidanyan, Karen, Fraux, Guillaume, Higer, Jacob, Kellner, Matthias, Li, Tao E, Pós, Eszter S, Stocco, Elia, Trenins, George, Hirshberg, Barak, Rossi, Mariana, Ceriotti, Michele
Published:
Cornell University Library, arXiv.org
Subjects:
Online Access:Citation/Abstract
Full text outside of ProQuest
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3078791340
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1063/5.0215869  |2 doi 
035 |a 3078791340 
045 0 |b d20240710 
100 1 |a Litman, Yair 
245 1 |a i-PI 3.0: a flexible and efficient framework for advanced atomistic simulations 
260 |b Cornell University Library, arXiv.org  |c Jul 10, 2024 
513 |a Working Paper 
520 3 |a Atomic-scale simulations have progressed tremendously over the past decade, largely due to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques, thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler-Parinello, DeePMD and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities. 
653 |a Simulation 
653 |a Algorithms 
653 |a Python 
653 |a Rapid prototyping 
653 |a Neural networks 
653 |a Modular structures 
653 |a Machine learning 
653 |a Electronic structure 
653 |a Computer simulation 
700 1 |a Kapil, Venkat 
700 1 |a Feldman, Yotam M Y 
700 1 |a Tisi, Davide 
700 1 |a Begušić, Tomislav 
700 1 |a Fidanyan, Karen 
700 1 |a Fraux, Guillaume 
700 1 |a Higer, Jacob 
700 1 |a Kellner, Matthias 
700 1 |a Li, Tao E 
700 1 |a Pós, Eszter S 
700 1 |a Stocco, Elia 
700 1 |a Trenins, George 
700 1 |a Hirshberg, Barak 
700 1 |a Rossi, Mariana 
700 1 |a Ceriotti, Michele 
773 0 |t arXiv.org  |g (Jul 10, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3078791340/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.15224