Design of Ultrasonic Guided Wave Pipeline Non-Destructive Testing System Based on Adaptive Wavelet Threshold Denoising

Guardado en:
Bibliografiske detaljer
Udgivet i:Electronics vol. 13, no. 13 (2024), p. 2536
Hovedforfatter: Si-Yu, Huang
Andre forfattere: Ying-Qing Guo, Xu-Lei, Zang, Zhao-Dong, Xu
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3079023490
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics13132536  |2 doi 
035 |a 3079023490 
045 2 |b d20240101  |b d20241231 
084 |a 231458  |2 nlm 
100 1 |a Si-Yu, Huang  |u College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; <email>mrsec@njfu.edu.cn</email> 
245 1 |a Design of Ultrasonic Guided Wave Pipeline Non-Destructive Testing System Based on Adaptive Wavelet Threshold Denoising 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Guided wave ultrasonic testing (GWUT) within the realm of pipeline inspection is an efficacious approach; however, current GWUT systems are characterized by high costs and power consumption, and their detection results are significantly susceptible to noise interference. Addressing these issues, this study introduces a GWUT system predicated on adaptive wavelet threshold denoising, centered around a low-power main controller, achieving cost-effective and low-power-consumption pipeline non-destructive testing (NDT) with clear results. The system employs an STM32 as the main controller and utilizes direct digital frequency synthesis (DDS) technology to generate ultrasonic excitation signals. These signals, after power amplifier processing, ensure high-stability output for the driving signal. In conjunction with the signal acquisition module, digital filtering of the collected signals is executed via the host computer. Empirical validation has demonstrated that the system can achieve an output amplitude of up to 90 Vpp within an excitation frequency range of 20 kHz–400 kHz, directly driving piezoelectric transducers. The optimal threshold is identified using the butterfly optimization algorithm, enabling the wavelet threshold function to adaptively denoise the echo signals, thereby significantly enhancing the capability to identify pipeline damage. 
653 |a Noise threshold 
653 |a Excitation 
653 |a Accuracy 
653 |a Adaptive systems 
653 |a Pipes 
653 |a Piezoelectric transducers 
653 |a Nondestructive testing 
653 |a Noise reduction 
653 |a Ultrasonic testing 
653 |a Signal processing 
653 |a Frequency ranges 
653 |a Damage detection 
653 |a Power amplifiers 
653 |a Design 
653 |a Algorithms 
653 |a Methods 
653 |a Digital computers 
653 |a Controllers 
653 |a Power consumption 
653 |a Efficiency 
653 |a Composite materials 
700 1 |a Ying-Qing Guo  |u College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; <email>mrsec@njfu.edu.cn</email> 
700 1 |a Xu-Lei, Zang  |u China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures, Southeast University, Nanjing 210096, China; <email>zxlseu@seu.edu.cn</email> (X.-L.Z.); <email>xuzhdgyq@seu.edu.cn</email> (Z.-D.X.) 
700 1 |a Zhao-Dong, Xu  |u China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures, Southeast University, Nanjing 210096, China; <email>zxlseu@seu.edu.cn</email> (X.-L.Z.); <email>xuzhdgyq@seu.edu.cn</email> (Z.-D.X.) 
773 0 |t Electronics  |g vol. 13, no. 13 (2024), p. 2536 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3079023490/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3079023490/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3079023490/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch