Velocity gradient partitioning in turbulent flows
محفوظ في:
| الحاوية / القاعدة: | arXiv.org (Dec 4, 2024), p. n/a |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | |
| منشور في: |
Cornell University Library, arXiv.org
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full text outside of ProQuest |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3080872876 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2331-8422 | ||
| 024 | 7 | |a 10.1017/jfm.2024.1021 |2 doi | |
| 035 | |a 3080872876 | ||
| 045 | 0 | |b d20241204 | |
| 100 | 1 | |a Arun, Rahul | |
| 245 | 1 | |a Velocity gradient partitioning in turbulent flows | |
| 260 | |b Cornell University Library, arXiv.org |c Dec 4, 2024 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a The velocity gradient tensor can be decomposed into normal straining, pure shearing and rigid rotation tensors, each with distinct symmetry and normality properties. We partition the strength of turbulent velocity gradients based on the relative contributions of these constituents in several canonical flows. These flows include forced isotropic turbulence, turbulent channels and turbulent boundary layers. For forced isotropic turbulence, the partitioning is in excellent agreement with previous results. For wall-bounded turbulence, the partitioning collapses onto the isotropic partitioning far from the wall, where the mean shearing is relatively weak. By contrast, the near-wall partitioning is dominated by shearing. Between these two regimes, the partitioning collapses well at sufficiently high friction Reynolds numbers and its variations in the buffer layer and the log-law region can be reasonably modelled as a function of the mean shearing strength. Altogether, our results highlight the expressivity and broad applicability of the velocity gradient partitioning as advantages for turbulence modelling. | |
| 653 | |a Potential flow | ||
| 653 | |a Velocity | ||
| 653 | |a Isotropic turbulence | ||
| 653 | |a Buffer layers | ||
| 653 | |a Velocity gradient | ||
| 653 | |a Turbulent boundary layer | ||
| 653 | |a Shearing | ||
| 653 | |a Rotation | ||
| 653 | |a Tensors | ||
| 653 | |a Shear layers | ||
| 653 | |a Fluid flow | ||
| 653 | |a Turbulent flow | ||
| 653 | |a Reynolds number | ||
| 653 | |a Fluid dynamics | ||
| 653 | |a Turbulent jets | ||
| 653 | |a Partitioning | ||
| 700 | 1 | |a Colonius, Tim | |
| 773 | 0 | |t arXiv.org |g (Dec 4, 2024), p. n/a | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3080872876/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u http://arxiv.org/abs/2407.08955 |