Experimental verifiable multi-client blind quantum computing on a Qline architecture

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jul 24, 2024), p. n/a
Autor principal: Polacchi, Beatrice
Altres autors: Leichtle, Dominik, Carvacho, Gonzalo, Milani, Giorgio, Spagnolo, Nicolò, Kaplan, Marc, Kashefi, Elham, Sciarrino, Fabio
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3080873461
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3080873461 
045 0 |b d20240724 
100 1 |a Polacchi, Beatrice 
245 1 |a Experimental verifiable multi-client blind quantum computing on a Qline architecture 
260 |b Cornell University Library, arXiv.org  |c Jul 24, 2024 
513 |a Working Paper 
520 3 |a The exploitation of certification tools by end users represents a fundamental aspect of the development of quantum technologies as the hardware scales up beyond the regime of classical simulatability. Certifying quantum networks becomes even more crucial when the privacy of their users is exposed to malicious quantum nodes or servers as in the case of multi-client distributed blind quantum computing, where several clients delegate a joint private computation to remote quantum servers, such as federated quantum machine learning. In such protocols, security must be provided not only by keeping data hidden but also by verifying that the server is correctly performing the requested computation while minimizing the hardware assumptions on the employed devices. Notably, standard verification techniques fail in scenarios where the clients receive quantum states from untrusted sources such as, for example, in a recently demonstrated linear quantum network performing multi-client blind quantum computation. However, recent theoretical results provide techniques to verify blind quantum computations even in the case of untrusted state preparation. Equipped with such theoretical tools, in this work, we provide the first experimental implementation of a two-client verifiable blind quantum computing protocol in a distributed architecture. The obtained results represent novel perspectives for the verification of multi-tenant distributed quantum computation in large-scale networks. 
653 |a Quantum computing 
653 |a Verification 
653 |a Servers 
653 |a Computer architecture 
653 |a Clients 
653 |a Machine learning 
653 |a Hardware 
653 |a Software 
653 |a Privacy 
653 |a End users 
700 1 |a Leichtle, Dominik 
700 1 |a Carvacho, Gonzalo 
700 1 |a Milani, Giorgio 
700 1 |a Spagnolo, Nicolò 
700 1 |a Kaplan, Marc 
700 1 |a Kashefi, Elham 
700 1 |a Sciarrino, Fabio 
773 0 |t arXiv.org  |g (Jul 24, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3080873461/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.09310