Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jul 12, 2024), p. n/a
Autor principal: Sanborn, Sophia
Altres autors: Mathe, Johan, Papillon, Mathilde, Domas Buracas, Lillemark, Hansen J, Shewmake, Christian, Bertics, Abby, Pennec, Xavier, Miolane, Nina
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3080874422
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3080874422 
045 0 |b d20240712 
100 1 |a Sanborn, Sophia 
245 1 |a Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures 
260 |b Cornell University Library, arXiv.org  |c Jul 12, 2024 
513 |a Working Paper 
520 3 |a The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field. 
653 |a Structured data 
653 |a Taxonomy 
653 |a Machine learning 
653 |a Algebra 
653 |a Euclidean space 
653 |a Geometry 
653 |a Euclidean geometry 
653 |a Topology 
700 1 |a Mathe, Johan 
700 1 |a Papillon, Mathilde 
700 1 |a Domas Buracas 
700 1 |a Lillemark, Hansen J 
700 1 |a Shewmake, Christian 
700 1 |a Bertics, Abby 
700 1 |a Pennec, Xavier 
700 1 |a Miolane, Nina 
773 0 |t arXiv.org  |g (Jul 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3080874422/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.09468