Modified receiver architecture in software-defined radio for real-time modulation classification

Guardado en:
Detalles Bibliográficos
Publicado en:EURASIP Journal on Advances in Signal Processing vol. 2024, no. 1 (Dec 2024), p. 77
Autor principal: Le, Quoc Nam
Otros Autores: Huynh, Tan Quoc, Ta, Hien Quang, Tan, Phuoc Vo, Nguyen, Lap Luat
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3081501474
003 UK-CbPIL
022 |a 1687-6172 
022 |a 1687-6180 
024 7 |a 10.1186/s13634-024-01176-6  |2 doi 
035 |a 3081501474 
045 2 |b d20241201  |b d20241231 
084 |a 130316  |2 nlm 
100 1 |a Le, Quoc Nam  |u International University, School of Electrical Engineering, Ho Chi Minh city, Vietnam (GRID:grid.440795.b) (ISNI:0000 0004 0493 5452); Vietnam National University, Ho Chi Minh city, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
245 1 |a Modified receiver architecture in software-defined radio for real-time modulation classification 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Automatic modulation classification (AMC) is an important process for future communication systems with prominent applications from spectrum management, and secure communication, to cognitive radio. The requirement for an efficient AMC classifier is due to its capability in blind modulation recognition, which is a difficult task in real scenarios where the limitations of traditional hardware and the complexity of channel impairments are involved. Therefore, this paper proposes a complete real-time AMC system based on software-defined radio and deep learning architecture. The system demodulation performance is verified through simulations and real channel impairment conditions to ensure reliability. With at most 6 times reduced number of parameters, two proposed models convolutional long short-term memory deep neural network and residual long short-term memory neural network also show a general improvement in classification accuracy compared with reference studies. The performance of these models at real-time AMC is tested with suitable processing time for practical applications. 
653 |a Software reliability 
653 |a Cognitive radio 
653 |a Communications systems 
653 |a Classification 
653 |a Computer architecture 
653 |a Machine learning 
653 |a Real time 
653 |a Modulation 
653 |a Artificial neural networks 
653 |a Software radio 
653 |a Demodulation 
653 |a Receivers & amplifiers 
653 |a Simulation 
653 |a Software 
653 |a Accuracy 
653 |a Deep learning 
653 |a Memory 
653 |a Neural networks 
653 |a Signal processing 
653 |a Adaptation 
653 |a Performance evaluation 
700 1 |a Huynh, Tan Quoc  |u International University, School of Electrical Engineering, Ho Chi Minh city, Vietnam (GRID:grid.440795.b) (ISNI:0000 0004 0493 5452); Vietnam National University, Ho Chi Minh city, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
700 1 |a Ta, Hien Quang  |u International University, School of Electrical Engineering, Ho Chi Minh city, Vietnam (GRID:grid.440795.b) (ISNI:0000 0004 0493 5452); Vietnam National University, Ho Chi Minh city, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
700 1 |a Tan, Phuoc Vo  |u International University, School of Electrical Engineering, Ho Chi Minh city, Vietnam (GRID:grid.440795.b) (ISNI:0000 0004 0493 5452); Vietnam National University, Ho Chi Minh city, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
700 1 |a Nguyen, Lap Luat  |u International University, School of Electrical Engineering, Ho Chi Minh city, Vietnam (GRID:grid.440795.b) (ISNI:0000 0004 0493 5452); Vietnam National University, Ho Chi Minh city, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X) 
773 0 |t EURASIP Journal on Advances in Signal Processing  |g vol. 2024, no. 1 (Dec 2024), p. 77 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3081501474/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3081501474/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch