AIGDet: Altitude-Information-Guided Vehicle Target Detection in UAV-Based Images

Guardado en:
Detalles Bibliográficos
Publicado en:IEEE Sensors Journal vol. 24, no. 14 (2024), p. 22672
Autor principal: Yang, Ziqin
Otros Autores: Xie, Fuxin, Zhou, Jian, Yao, Yuan, Hu, Cheng, Zhou, Baoding
Publicado:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3081870500
003 UK-CbPIL
022 |a 1530-437X 
022 |a 1558-1748 
024 7 |a 10.1109/JSEN.2024.3406540  |2 doi 
035 |a 3081870500 
045 2 |b d20240101  |b d20241231 
084 |a 121631  |2 nlm 
100 1 |a Yang, Ziqin  |u School of Electrical Engineering and Automation, Wuhan University, Wuhan, China 
245 1 |a AIGDet: Altitude-Information-Guided Vehicle Target Detection in UAV-Based Images 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2024 
513 |a Journal Article 
520 3 |a Conducting extensive vehicle detection through the high-altitude perspective offered by unmanned aerial vehicles (UAVs) poses significant challenges. The high-altitude operation of UAVs to acquire a broader reconnaissance view results in low-resolution and densely packed vehicle targets in the captured imagery, creating substantial difficulties for vehicle detection. To address this, we propose a vehicle detection network specifically designed for UAVs, incorporating an end-to-end network that takes scale consistency constraints into consideration. The cornerstone of our method is the dynamic feature refinement module (DFRM), designed to overcome the feature attenuation and limitations in utilizing high-level prior information common in traditional approaches. Initially, we developed an adaptive target suggestion module based on the prior characteristics of the targets and scenes, and the scale consistency hypothesis of similar vehicles at different UAV flying altitudes. This module optimizes the number and scale of anchors by introducing prior information, facilitating preliminary localization of small-scale imaging targets. Subsequently, we constructed a multilayer feature purification structure based on a feature pyramid network (FPN) to refine bounding boxes at each level with height prior, integrating additional contextual information. This approach allows us to utilize more contextual information for vehicle detection while enhancing localization accuracy through detailed height prior. Our application and evaluation on multiple open-source datasets with height labels demonstrate that our method, with minimal parameter introduction, achieves excellent mean average precision (mAP) value. This underscores the effectiveness of our approach in UAV-based vehicle detection. 
653 |a Unmanned aerial vehicles 
653 |a Image acquisition 
653 |a High altitude 
653 |a Image resolution 
653 |a Modules 
653 |a Target acquisition 
653 |a Localization 
653 |a Multilayers 
653 |a Altitude 
653 |a Vehicles 
653 |a Target detection 
700 1 |a Xie, Fuxin  |u School of Electrical Engineering and Automation, Wuhan University, Wuhan, China 
700 1 |a Zhou, Jian  |u State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China 
700 1 |a Yao, Yuan  |u State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS) and the Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan, China 
700 1 |a Hu, Cheng  |u College of Computer Technology, Wuhan Institute of Shipbuilding Technology, Wuhan, China 
700 1 |a Zhou, Baoding  |u College of Civil and Transportation Engineering and Institute of Urban Smart Transportation and Safety Maintenance, Shenzhen University, Shenzhen, China 
773 0 |t IEEE Sensors Journal  |g vol. 24, no. 14 (2024), p. 22672 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3081870500/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch