Calibrated Diverse Ensemble Entropy Minimization for Robust Test-Time Adaptation in Prostate Cancer Detection

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Jul 17, 2024), p. n/a
Autor principal: Gilany, Mahdi
Outros Autores: Harmanani, Mohamed, Wilson, Paul, Minh Nguyen Nhat To, Jamzad, Amoon, Fooladgar, Fahimeh, Wodlinger, Brian, Abolmaesumi, Purang, Mousavi, Parvin
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3082383637
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3082383637 
045 0 |b d20240717 
100 1 |a Gilany, Mahdi 
245 1 |a Calibrated Diverse Ensemble Entropy Minimization for Robust Test-Time Adaptation in Prostate Cancer Detection 
260 |b Cornell University Library, arXiv.org  |c Jul 17, 2024 
513 |a Working Paper 
520 3 |a High resolution micro-ultrasound has demonstrated promise in real-time prostate cancer detection, with deep learning becoming a prominent tool for learning complex tissue properties reflected on ultrasound. However, a significant roadblock to real-world deployment remains, which prior works often overlook: model performance suffers when applied to data from different clinical centers due to variations in data distribution. This distribution shift significantly impacts the model's robustness, posing major challenge to clinical deployment. Domain adaptation and specifically its test-time adaption (TTA) variant offer a promising solution to address this challenge. In a setting designed to reflect real-world conditions, we compare existing methods to state-of-the-art TTA approaches adopted for cancer detection, demonstrating the lack of robustness to distribution shifts in the former. We then propose Diverse Ensemble Entropy Minimization (DEnEM), questioning the effectiveness of current TTA methods on ultrasound data. We show that these methods, although outperforming baselines, are suboptimal due to relying on neural networks output probabilities, which could be uncalibrated, or relying on data augmentation, which is not straightforward to define on ultrasound data. Our results show a significant improvement of \(5\%\) to \(7\%\) in AUROC over the existing methods and \(3\%\) to \(5\%\) over TTA methods, demonstrating the advantage of DEnEM in addressing distribution shift. \keywords{Ultrasound Imaging \and Prostate Cancer \and Computer-aided Diagnosis \and Distribution Shift Robustness \and Test-time Adaptation.} 
653 |a Data augmentation 
653 |a Entropy 
653 |a Testing time 
653 |a Neural networks 
653 |a Prostate cancer 
653 |a Ultrasonic testing 
653 |a Optimization 
653 |a Computer aided testing 
653 |a Robustness (mathematics) 
653 |a Deep learning 
653 |a Machine learning 
653 |a Adaptation 
653 |a Real time 
653 |a Ultrasonic imaging 
700 1 |a Harmanani, Mohamed 
700 1 |a Wilson, Paul 
700 1 |a Minh Nguyen Nhat To 
700 1 |a Jamzad, Amoon 
700 1 |a Fooladgar, Fahimeh 
700 1 |a Wodlinger, Brian 
700 1 |a Abolmaesumi, Purang 
700 1 |a Mousavi, Parvin 
773 0 |t arXiv.org  |g (Jul 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3082383637/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.12697