Proximity-based Self-Federated Learning

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jul 17, 2024), p. n/a
Autor principal: Domini, Davide
Altres autors: Aguzzi, Gianluca, Farabegoli, Nicolas, Viroli, Mirko, Esterle, Lukas
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3082397893
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3082397893 
045 0 |b d20240717 
100 1 |a Domini, Davide 
245 1 |a Proximity-based Self-Federated Learning 
260 |b Cornell University Library, arXiv.org  |c Jul 17, 2024 
513 |a Working Paper 
520 3 |a In recent advancements in machine learning, federated learning allows a network of distributed clients to collaboratively develop a global model without needing to share their local data. This technique aims to safeguard privacy, countering the vulnerabilities of conventional centralized learning methods. Traditional federated learning approaches often rely on a central server to coordinate model training across clients, aiming to replicate the same model uniformly across all nodes. However, these methods overlook the significance of geographical and local data variances in vast networks, potentially affecting model effectiveness and applicability. Moreover, relying on a central server might become a bottleneck in large networks, such as the ones promoted by edge computing. Our paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning that enables the self-organised creation of multiple federations of clients based on their geographic proximity and data distribution without exchanging raw data. Indeed, unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy. This method not only addresses the limitations posed by diverse data distributions but also enhances the model's adaptability to different regional characteristics creating specialized models for each federation. We demonstrate the efficacy of our approach through simulations on well-known datasets, showcasing its effectiveness over the conventional centralized federated learning framework. 
653 |a Geographical distribution 
653 |a Proximity 
653 |a Algorithms 
653 |a Clients 
653 |a Servers 
653 |a Machine learning 
653 |a Federated learning 
653 |a Edge computing 
653 |a Nodes 
653 |a Federations 
653 |a Effectiveness 
700 1 |a Aguzzi, Gianluca 
700 1 |a Farabegoli, Nicolas 
700 1 |a Viroli, Mirko 
700 1 |a Esterle, Lukas 
773 0 |t arXiv.org  |g (Jul 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3082397893/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.12410