Conversational Query Reformulation with the Guidance of Retrieved Documents

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Dec 16, 2024), p. n/a
المؤلف الرئيسي: Park, Jeonghyun
مؤلفون آخرون: Lee, Hwanhee
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3082398846
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3082398846 
045 0 |b d20241216 
100 1 |a Park, Jeonghyun 
245 1 |a Conversational Query Reformulation with the Guidance of Retrieved Documents 
260 |b Cornell University Library, arXiv.org  |c Dec 16, 2024 
513 |a Working Paper 
520 3 |a Conversational search seeks to retrieve relevant passages for the given questions in conversational question answering. Conversational Query Reformulation (CQR) improves conversational search by refining the original queries into de-contextualized forms to resolve the issues in the original queries, such as omissions and coreferences. Previous CQR methods focus on imitating human written queries which may not always yield meaningful search results for the retriever. In this paper, we introduce GuideCQR, a framework that refines queries for CQR by leveraging key information from the initially retrieved documents. Specifically, GuideCQR extracts keywords and generates expected answers from the retrieved documents, then unifies them with the queries after filtering to add useful information that enhances the search process. Experimental results demonstrate that our proposed method achieves state-of-the-art performance across multiple datasets, outperforming previous CQR methods. Additionally, we show that GuideCQR can get additional performance gains in conversational search using various types of queries, even for queries written by humans. 
653 |a Questions 
653 |a Large language models 
653 |a Queries 
653 |a Query processing 
653 |a Documents 
653 |a Searching 
700 1 |a Lee, Hwanhee 
773 0 |t arXiv.org  |g (Dec 16, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3082398846/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.12363