A Framework for testing Federated Learning algorithms using an edge-like environment

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:arXiv.org (Dec 12, 2024), p. n/a
Hoofdauteur: Felipe Machado Schwanck
Andere auteurs: Marcos Tomazzoli Leipnitz, Carbonera, Joel Luís, Juliano Araujo Wickboldt
Gepubliceerd in:
Cornell University Library, arXiv.org
Onderwerpen:
Online toegang:Citation/Abstract
Full text outside of ProQuest
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3082706068
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.future.2024.107626  |2 doi 
035 |a 3082706068 
045 0 |b d20241212 
100 1 |a Felipe Machado Schwanck 
245 1 |a A Framework for testing Federated Learning algorithms using an edge-like environment 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a Federated Learning (FL) is a machine learning paradigm in which many clients cooperatively train a single centralized model while keeping their data private and decentralized. FL is commonly used in edge computing, which involves placing computer workloads (both hardware and software) as close as possible to the edge, where the data is being created and where actions are occurring, enabling faster response times, greater data privacy, and reduced data transfer costs. However, due to the heterogeneous data distributions/contents of clients, it is non-trivial to accurately evaluate the contributions of local models in global centralized model aggregation. This is an example of a major challenge in FL, commonly known as data imbalance or class imbalance. In general, testing and assessing FL algorithms can be a very difficult and complex task due to the distributed nature of the systems. In this work, a framework is proposed and implemented to assess FL algorithms in a more easy and scalable way. This framework is evaluated over a distributed edge-like environment managed by a container orchestration platform (i.e. Kubernetes). 
653 |a Data transfer (computers) 
653 |a Algorithms 
653 |a Clients 
653 |a Machine learning 
653 |a Federated learning 
653 |a Response time (computers) 
653 |a Privacy 
653 |a Edge computing 
700 1 |a Marcos Tomazzoli Leipnitz 
700 1 |a Carbonera, Joel Luís 
700 1 |a Juliano Araujo Wickboldt 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3082706068/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.12980