A Benchmark for Gaussian Splatting Compression and Quality Assessment Study

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Jul 19, 2024), p. n/a
Egile nagusia: Yang, Qi
Beste egile batzuk: Yang, Kaifa, Xing, Yuke, Xu, Yiling, Zhu, Li
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3083264833
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3083264833 
045 0 |b d20240719 
100 1 |a Yang, Qi 
245 1 |a A Benchmark for Gaussian Splatting Compression and Quality Assessment Study 
260 |b Cornell University Library, arXiv.org  |c Jul 19, 2024 
513 |a Working Paper 
520 3 |a To fill the gap of traditional GS compression method, in this paper, we first propose a simple and effective GS data compression anchor called Graph-based GS Compression (GGSC). GGSC is inspired by graph signal processing theory and uses two branches to compress the primitive center and attributes. We split the whole GS sample via KDTree and clip the high-frequency components after the graph Fourier transform. Followed by quantization, G-PCC and adaptive arithmetic coding are used to compress the primitive center and attribute residual matrix to generate the bitrate file. GGSS is the first work to explore traditional GS compression, with advantages that can reveal the GS distortion characteristics corresponding to typical compression operation, such as high-frequency clipping and quantization. Second, based on GGSC, we create a GS Quality Assessment dataset (GSQA) with 120 samples. A subjective experiment is conducted in a laboratory environment to collect subjective scores after rendering GS into Processed Video Sequences (PVS). We analyze the characteristics of different GS distortions based on Mean Opinion Scores (MOS), demonstrating the sensitivity of different attributes distortion to visual quality. The GGSC code and the dataset, including GS samples, MOS, and PVS, are made publicly available at https://github.com/Qi-Yangsjtu/GGSC. 
653 |a Distortion 
653 |a Quality assessment 
653 |a Datasets 
653 |a Arithmetic coding 
653 |a Fourier transforms 
653 |a Data compression 
653 |a Adaptive sampling 
653 |a Video compression 
700 1 |a Yang, Kaifa 
700 1 |a Xing, Yuke 
700 1 |a Xu, Yiling 
700 1 |a Zhu, Li 
773 0 |t arXiv.org  |g (Jul 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3083264833/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.14197