Athermal package for OH suppression filters in astronomy part 1: design

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Jul 20, 2024), p. n/a
Hovedforfatter: Carlos Enrique Rordriguez Alvarez
Andre forfattere: Rahman, Aashia, Önel, Hakan, Dionies, Frank, Paschke, Jens, Bauer, Svend-Marian
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3083764440
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1117/12.3017699  |2 doi 
035 |a 3083764440 
045 0 |b d20240720 
100 1 |a Carlos Enrique Rordriguez Alvarez 
245 1 |a Athermal package for OH suppression filters in astronomy part 1: design 
260 |b Cornell University Library, arXiv.org  |c Jul 20, 2024 
513 |a Working Paper 
520 3 |a We present the design of an athermal package for fiber Bragg grating (FBG)filters fabricated at our Institute for use in ground-based near-infrared (NIR) telescopes. Aperiodic multichannel FBG filters combined with photonic lanterns can effectively filter out extremely bright atmospheric hydroxyl (OH) emission lines that severely hinder ground-based NIR observations. While FBGs have the capability of filtering specific wavelengths with high precision, due to their sensitivity to temperature variations, the success in their performance as OH suppression filters depends on a suitable athermal package that can maintain the deviations of the FBG wavelengths from that of the OH emission lines within sub-picometer accuracy over a temperature range of about 40 K. (i.e. 263 K to 303 K). We aim to develop an athermal package over the aforementioned temperature range for an optical fiber consisting of multichannel FBGs for a maximum filter length of 110 mm. In this work, we demonstrate the complete design methodology of such a package. First, we developed a custom-built test rig to study a wide range of critical physical properties of the fiber, such as strain and temperature sensitivities, elastic modulus, optimum fiber pre-tension, and adhesion performance.Next, we used these data to confirm the athermal response of an FBG bonded on the test rig from room temperature to 313 K. Based on this study, we developed a computer-aided design (CAD) model of the package and analyzed its athermal characteristics with a suitable selection of materials and their nominal dimensions using finite element analysis (FEA). We finally discuss the novel aspects of the design to achieve high-precision thermal stabilization of these filters in the temperature range of interest. 
653 |a Design analysis 
653 |a Finite element method 
653 |a Bragg gratings 
653 |a Infrared astronomy 
653 |a Lanterns 
653 |a Sensitivity 
653 |a Fluid filters 
653 |a Modulus of elasticity 
653 |a Near infrared radiation 
653 |a Emission 
653 |a Infrared telescopes 
653 |a Room temperature 
653 |a Elastic properties 
653 |a Infrared filters 
653 |a Optical fibers 
653 |a Physical properties 
653 |a Computer aided testing 
653 |a Computer aided design--CAD 
653 |a Wavelengths 
653 |a Ground-based observation 
653 |a Strain 
653 |a Adhesive bonding 
653 |a Optical properties 
700 1 |a Rahman, Aashia 
700 1 |a Önel, Hakan 
700 1 |a Dionies, Frank 
700 1 |a Paschke, Jens 
700 1 |a Bauer, Svend-Marian 
773 0 |t arXiv.org  |g (Jul 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3083764440/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.14930