Nonlinear dynamics of vortex pairing in transitional jets

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jul 31, 2024), p. n/a
Autor principal: Nekkanti, Akhil
Otros Autores: Colonius, Tim, Schmidt, Oliver T
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3084545236
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3084545236 
045 0 |b d20240731 
100 1 |a Nekkanti, Akhil 
245 1 |a Nonlinear dynamics of vortex pairing in transitional jets 
260 |b Cornell University Library, arXiv.org  |c Jul 31, 2024 
513 |a Working Paper 
520 3 |a This study investigates the onset of linear instabilities and their later nonlinear interactions in the shear layer of an initially-laminar jet using a combination of stability analysis and data from high-fidelity flow simulations. We provide a complete picture of the vortex-pairing process. Hydrodynamic instabilities initiate the transition to turbulence, causing the shear layer to spread rapidly. In this process, the shear layer rolls up to form vortices, accompanied by the exponential growth of the fundamental frequency. As the fundamental frequency grows, it gains energy from the mean flow. Subsequently, as it saturates and begins to decay, the fundamental vortices start to pair. During this vortex pairing process, the subharmonic vortex acquires energy both linearly from the mean flow and nonlinearly through a reverse cascade from the fundamental. The process concludes when the subharmonic vortex eventually saturates. Similarly, two subharmonic vortices merge to form a second subharmonic vortex. Our results confirm Kelly's (1967) hypothesis of a resonance mechanism between the fundamental and subharmonic, which supplies energy to the subharmonic. In this multi-tonal, convective-dominated flow, we clarify the ambiguity surrounding the fundamental frequency by demonstrating that the spatially most amplified frequency should be considered fundamental, rather than the structure associated with the spectral energy peak. For the initially-laminar jet considered here, the fundamental frequency corresponds to the fourth largest spectral peak, highlighting the important distinction between the energetically and dynamical significance of a tone. Despite its low energy, the fundamental frequency is dynamically dominant as it determines all other spectral peaks and supplies energy to the subharmonics through a reverse energy cascade. 
653 |a Vortices 
653 |a Flow stability 
653 |a Flow simulation 
653 |a Laminar flow 
653 |a Resonant frequencies 
653 |a Fluid flow 
653 |a Shear layers 
653 |a Turbulent flow 
653 |a Stability analysis 
653 |a Energy 
653 |a Fluid dynamics 
653 |a Shear flow 
653 |a Nonlinear dynamics 
653 |a Cascade flow 
700 1 |a Colonius, Tim 
700 1 |a Schmidt, Oliver T 
773 0 |t arXiv.org  |g (Jul 31, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084545236/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.16851