A Hybrid Extended Kalman Filter Based on Parametrized ANNs for the Improvement of the Forecasts of Numerical Weather and Wave Prediction Models

Guardado en:
Detalles Bibliográficos
Publicado en:Atmosphere vol. 15, no. 7 (2024), p. 828
Autor principal: Donas, Athanasios
Otros Autores: Galanis, George, Pytharoulis, Ioannis, Famelis, Ioannis Th
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3084736413
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos15070828  |2 doi 
035 |a 3084736413 
045 2 |b d20240101  |b d20241231 
084 |a 231428  |2 nlm 
100 1 |a Donas, Athanasios  |u microSENSES Laboratory, Department of Electrical and Electronics Engineering, Ancient Olive Grove Campus, University of West Attica, 250, Thivon Ave., Egaleo, 12241 Athens, Greece; <email>adonas@uniwa.gr</email>; Mathematical Modeling and Applications Laboratory, Hellenic Naval Academy, Hatzikiriakion, 18539 Piraeus, Greece; <email>ggalanis@hna.gr</email> 
245 1 |a A Hybrid Extended Kalman Filter Based on Parametrized ANNs for the Improvement of the Forecasts of Numerical Weather and Wave Prediction Models 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a A hybrid optimization filter for weather and wave numerical models is proposed and tested in this study. Parametrized Artificial Neural Networks are utilized in conjunction with Extended Kalman Filters to provide a novel postprocess strategy for 10 m wind speed, 2 m air temperature, and significant wave height simulations. The innovation of the developed model is the implementation of Feedforward Neural Networks and Radial Basis Function Neural Networks as estimators of an exogenous parameter that adjusts the covariance matrices of the Extended Kalman Filter process. This hybrid system is evaluated through a time window process leading to promising results, thus enabling a decrease in systematic errors alongside the restriction of the error variability and the corresponding forecast uncertainty. The obtained results showed that the average reduction of the systematic error exceeded 75%, while the corresponding nonsystematic part of that error decreased by 35%. 
651 4 |a Greece 
651 4 |a Mediterranean Sea 
653 |a Wind speed 
653 |a Kalman filters 
653 |a Topography 
653 |a Artificial neural networks 
653 |a Weather 
653 |a Neural networks 
653 |a Air temperature 
653 |a Wave predicting 
653 |a Weather forecasting 
653 |a Parameter uncertainty 
653 |a Boundary conditions 
653 |a Prediction models 
653 |a Case studies 
653 |a Covariance matrix 
653 |a Systematic errors 
653 |a Simulation 
653 |a Parameterization 
653 |a Parameter estimation 
653 |a Radial basis function 
653 |a Numerical models 
653 |a Mathematical models 
653 |a Electromagnetic wave filters 
653 |a Wave height 
653 |a Land use 
653 |a Error reduction 
653 |a Significant wave height 
653 |a Algorithms 
653 |a Hybrid systems 
653 |a Extended Kalman filter 
700 1 |a Galanis, George  |u Mathematical Modeling and Applications Laboratory, Hellenic Naval Academy, Hatzikiriakion, 18539 Piraeus, Greece; <email>ggalanis@hna.gr</email> 
700 1 |a Pytharoulis, Ioannis  |u Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; <email>pyth@geo.auth.gr</email> 
700 1 |a Famelis, Ioannis Th  |u microSENSES Laboratory, Department of Electrical and Electronics Engineering, Ancient Olive Grove Campus, University of West Attica, 250, Thivon Ave., Egaleo, 12241 Athens, Greece; <email>adonas@uniwa.gr</email> 
773 0 |t Atmosphere  |g vol. 15, no. 7 (2024), p. 828 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084736413/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3084736413/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3084736413/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch