Enhanced Learning Enriched Features Mechanism Using Deep Convolutional Neural Network for Image Denoising and Super-Resolution

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 14, no. 14 (2024), p. 6281
Autor principal: Iqra Waseem
Otros Autores: Habib, Muhammad, Rehman, Eid, Ruqia Bibi, Rehan Mehmood Yousaf, Aslam, Muhammad, Syeda Fizzah Jilani, Muhammad Waqar Younis
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3084778754
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app14146281  |2 doi 
035 |a 3084778754 
045 2 |b d20240101  |b d20241231 
084 |a 231338  |2 nlm 
100 1 |a Iqra Waseem  |u University Institute of Information Technology, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan 
245 1 |a Enhanced Learning Enriched Features Mechanism Using Deep Convolutional Neural Network for Image Denoising and Super-Resolution 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Image denoising and super-resolution play vital roles in imaging systems, greatly reducing the preprocessing cost of many AI techniques for object detection, segmentation, and tracking. Various advancements have been accomplished in this field, but progress is still needed. In this paper, we have proposed a novel technique named the Enhanced Learning Enriched Features (ELEF) mechanism using a deep convolutional neural network, which makes significant improvements to existing techniques. ELEF consists of two major processes: (1) Denoising, which removes the noise from images; and (2) Super-resolution, which improves the clarity and details of images. Features are learned through deep CNN and not through traditional algorithms so that we can better refine and enhance images. To effectively capture features, the network architecture adopted Dual Attention Units (DUs), which align with the Multi-Scale Residual Block (MSRB) for robust feature extraction, working sidewise with the feature-matching Selective Kernel Extraction (SKF). In addition, resolution mismatching cases are processed in detail to produce high-quality images. The effectiveness of the ELEF model is highlighted by the performance metrics, achieving a Peak Signal-to-Noise Ratio (PSNR) of 42.99 and a Structural Similarity Index (SSIM) of 0.9889, which indicates the ability to carry out the desired high-quality image restoration and enhancement. 
653 |a Design 
653 |a Dictionaries 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Algorithms 
653 |a Signal processing 
653 |a Neural networks 
700 1 |a Habib, Muhammad  |u University Institute of Information Technology, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan 
700 1 |a Rehman, Eid  |u Department of Computer Science & Information Technology, University of Mianwali, Mianwali 42200, Pakistan 
700 1 |a Ruqia Bibi  |u University Institute of Information Technology, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan 
700 1 |a Rehan Mehmood Yousaf  |u University Institute of Information Technology, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan 
700 1 |a Aslam, Muhammad  |u Department of Computer Science, Aberystwyth University, Penglais, Aberystwyth SY23 3DB, UK 
700 1 |a Syeda Fizzah Jilani  |u Department of Physics, Physical Sciences Building, Aberystwyth University, Aberystwyth SY23 3BZ, UK 
700 1 |a Muhammad Waqar Younis  |u Department of Computer Science, Aberystwyth University, Penglais, Aberystwyth SY23 3DB, UK 
773 0 |t Applied Sciences  |g vol. 14, no. 14 (2024), p. 6281 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084778754/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3084778754/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3084778754/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch