An Improved Method to Identify Built-Up Areas of Urban Agglomerations in Eastern and Western China Based on Multi-Source Data Fusion

Guardat en:
Dades bibliogràfiques
Publicat a:Land vol. 13, no. 7 (2024), p. 974
Autor principal: Lu, Xiaoyi
Altres autors: Yang, Guang, Chen, Shijun
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3084927524
003 UK-CbPIL
022 |a 2073-445X 
024 7 |a 10.3390/land13070974  |2 doi 
035 |a 3084927524 
045 2 |b d20240101  |b d20241231 
084 |a 231528  |2 nlm 
100 1 |a Lu, Xiaoyi  |u College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; <email>2231989@tongji.edu.cn</email> (X.L.); <email>yangguang@tongji.edu.cn</email> (G.Y.) 
245 1 |a An Improved Method to Identify Built-Up Areas of Urban Agglomerations in Eastern and Western China Based on Multi-Source Data Fusion 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The rapid urbanization in China has significantly contributed to the vast expansion of urban built-up areas. Precisely extracting and monitoring these areas is crucial for understanding and optimizing the developmental process and spatial attributes of smart, compact cities. However, most existing studies tend to focus narrowly on a single city or on global scale with a single dimension, often ignoring mesoscale analysis across multiple urban agglomerations. In contrast, our study employs GIS and image-processing techniques to integrate multi-source data for the identification of built-up areas. We specifically compare and analyze two representative urban agglomerations in China: the Yangtze River Delta (YRD) in the east, and the Chengdu–Chongqing (CC) region in the west. We use different methods to extract built-up areas from socio-economic factors, natural surfaces, and traffic network dimensions. Additionally, we utilize a high-precision built-up area dataset of China as a reference for verification and comparison. Our findings reveal several significant insights: (1) The multi-source data fusion approach effectively enhances the extraction of built-up areas within urban agglomerations, achieving higher accuracy than previously employed methods. (2) Our research methodology performs particularly well in the CC urban agglomeration. The average precision rate in CC is 96.03%, while the average precision rate in YRD is lower, at 80.33%. This study provides an objective and accurate assessment of the distribution characteristics and internal spatial structure of built-up areas within urban agglomerations. This method offers a new perspective for identifying and monitoring built-up areas in Chinese urban agglomerations. 
651 4 |a China 
651 4 |a Yangtze River Delta 
653 |a Urbanization 
653 |a Socioeconomic factors 
653 |a Agglomeration 
653 |a Identification methods 
653 |a Identification 
653 |a Cities 
653 |a Image processing 
653 |a Data integration 
653 |a Monitoring 
653 |a Economic factors 
653 |a Dimensional analysis 
653 |a Urban areas 
653 |a Urban development 
653 |a Image contrast 
653 |a Research methodology 
653 |a Remote sensing 
653 |a Spatial data 
653 |a Economic statistics 
653 |a Socioeconomics 
653 |a Gross Domestic Product--GDP 
653 |a Algorithms 
653 |a Qualitative research 
653 |a Comparative analysis 
700 1 |a Yang, Guang  |u College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; <email>2231989@tongji.edu.cn</email> (X.L.); <email>yangguang@tongji.edu.cn</email> (G.Y.) 
700 1 |a Chen, Shijun  |u Chongming Carbon Neutral Institute, Tongji University, Shanghai 200092, China 
773 0 |t Land  |g vol. 13, no. 7 (2024), p. 974 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084927524/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3084927524/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3084927524/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch