Research and Application of Panoramic Visual Perception-Assisted Navigation Technology for Ships

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:Journal of Marine Science and Engineering vol. 12, no. 7 (2024), p. 1042
Príomhchruthaitheoir: Wang, Chiming
Rannpháirtithe: Cai, Xiaocong, Li, Yanan, Zhai, Runxuan, Wu, Rongjiong, Zhu, Shunzhi, Guan, Liangqing, Luo, Zhiqiang, Zhang, Shengchao, Zhang, Jianfeng
Foilsithe / Cruthaithe:
MDPI AG
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3084929953
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse12071042  |2 doi 
035 |a 3084929953 
045 2 |b d20240101  |b d20241231 
084 |a 231479  |2 nlm 
100 1 |a Wang, Chiming  |u School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China 
245 1 |a Research and Application of Panoramic Visual Perception-Assisted Navigation Technology for Ships 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a In response to challenges such as narrow visibility for ship navigators, limited field of view from a single camera, and complex maritime environments, this study proposes panoramic visual perception-assisted navigation technology. The approach includes introducing a region-of-interest search method based on SSIM and an elliptical weighted fusion method, culminating in the development of the ship panoramic visual stitching algorithm SSIM-EW. Additionally, the YOLOv8s model is improved by increasing the size of the detection head, introducing GhostNet, and replacing the regression loss function with the WIoU loss function, and a perception model yolov8-SGW for sea target detection is proposed. The experimental results demonstrate that the SSIM-EW algorithm achieves the highest PSNR indicator of 25.736, which can effectively reduce the stitching traces and significantly improve the stitching quality of panoramic images. Compared to the baseline model, the YOLOv8-SGW model shows improvements in the P, R, and mAP50 of 1.5%, 4.3%, and 2.3%, respectively, its mAP50 is significantly higher than that of other target detection models, and the detection ability of small targets at sea has been significantly improved. Implementing these algorithms in tugboat operations at ports enhances the fields of view of navigators, allowing for the identification of targets missed by AISs and radar systems, thus ensuring operational safety and advancing the level of vessel intelligence. 
653 |a Stitching 
653 |a Navigation 
653 |a Accuracy 
653 |a Visual perception 
653 |a Radar detection 
653 |a Tugboats 
653 |a Algorithms 
653 |a Regression models 
653 |a Radar equipment 
653 |a Target detection 
653 |a Visual fields 
653 |a Registration 
653 |a Image quality 
653 |a Perception 
653 |a Visual perception driven algorithms 
653 |a Radar 
653 |a Shipping industry 
653 |a Field of view 
653 |a Environmental 
700 1 |a Cai, Xiaocong  |u School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China 
700 1 |a Li, Yanan  |u School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China 
700 1 |a Zhai, Runxuan  |u School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China 
700 1 |a Wu, Rongjiong  |u School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China 
700 1 |a Zhu, Shunzhi  |u School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China 
700 1 |a Guan, Liangqing  |u Fujian Fuchuan Marine Engineering Technology Research Institute Co., Ltd., Fuzhou 350501, China 
700 1 |a Luo, Zhiqiang  |u Fujian Fuchuan Marine Engineering Technology Research Institute Co., Ltd., Fuzhou 350501, China 
700 1 |a Zhang, Shengchao  |u Xiamen Port Shipping Co., Ltd., Xiamen 361012, China 
700 1 |a Zhang, Jianfeng  |u Xiamen Port Shipping Co., Ltd., Xiamen 361012, China 
773 0 |t Journal of Marine Science and Engineering  |g vol. 12, no. 7 (2024), p. 1042 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084929953/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3084929953/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3084929953/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch