Effort-Aware Fault-Proneness Prediction Using Non-API-Based Package-Modularization Metrics

Spremljeno u:
Bibliografski detalji
Izdano u:Mathematics vol. 12, no. 14 (2024), p. 2201
Glavni autor: Shaikh, Mohsin
Daljnji autori: Tunio, Irfan, Khan, Jawad, Jung, Younhyun
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3084962222
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math12142201  |2 doi 
035 |a 3084962222 
045 2 |b d20240101  |b d20241231 
084 |a 231533  |2 nlm 
100 1 |a Shaikh, Mohsin  |u Department of Computer Science, The University of Larkano, Larkana 77062, Pakistan; <email>drmohsinshaikh@uolrk.edu.pk</email> 
245 1 |a Effort-Aware Fault-Proneness Prediction Using Non-API-Based Package-Modularization Metrics 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Source code complexity of legacy object-oriented (OO) software has a trickle-down effect over the key activities of software development and maintenance. Package-based OO design is widely believed to be an effective modularization. Recently, theories and methodologies have been proposed to assess the complementary aspects of legacy OO systems through package-modularization metrics. These package-modularization metrics basically address non-API-based object-oriented principles, like encapsulation, commonality-of-goal, changeability, maintainability, and analyzability. Despite their ability to characterize package organization, their application towards cost-effective fault-proneness prediction is yet to be determined. In this paper, we present theoretical illustration and empirical perspective of non-API-based package-modularization metrics towards effort-aware fault-proneness prediction. First, we employ correlation analysis to evaluate the relationship between faults and package-level metrics. Second, we use multivariate logistic regression with effort-aware performance indicators (ranking and classification) to investigate the practical application of proposed metrics. Our experimental analysis over open-source Java software systems provides statistical evidence for fault-proneness prediction and relatively better explanatory power than traditional metrics. Consequently, these results guide developers for reliable and modular package-based software design. 
653 |a Object oriented programming 
653 |a Software quality 
653 |a Maintainability 
653 |a Package design 
653 |a Modularization 
653 |a Source code 
653 |a Software development 
653 |a Cost analysis 
653 |a Commonality 
653 |a Modular systems 
653 |a Open source software 
653 |a Architecture 
653 |a Modularity 
653 |a Legacy systems 
653 |a Statistical analysis 
653 |a Product design 
653 |a Correlation analysis 
653 |a Application programming interface 
700 1 |a Tunio, Irfan  |u Department of Electronics Engineering, The University of Larkano, Larkana 77062, Pakistan; <email>irfanali.tunio@uolrk.edu.pk</email> 
700 1 |a Khan, Jawad  |u School of Computing, Gachon University, Seongnam 13120, Republic of Korea 
700 1 |a Jung, Younhyun  |u School of Computing, Gachon University, Seongnam 13120, Republic of Korea 
773 0 |t Mathematics  |g vol. 12, no. 14 (2024), p. 2201 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084962222/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3084962222/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3084962222/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch