An Efficient Sparse Recovery STAP Algorithm for Airborne Bistatic Radars Based on Atomic Selection under the Bayesian Framework

Gardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 16, no. 14 (2024), p. 2534
Autor Principal: Liu, Kun
Outros autores: Wang, Tong, Huang, Weijun
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3085010068
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16142534  |2 doi 
035 |a 3085010068 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Liu, Kun 
245 1 |a An Efficient Sparse Recovery STAP Algorithm for Airborne Bistatic Radars Based on Atomic Selection under the Bayesian Framework 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The traditional sparse recovery (SR) space-time adaptive processing (STAP) algorithms are greatly affected by grid mismatch, leading to poor performance in airborne bistatic radar clutter suppression. In order to address this issue, this paper proposes an SR STAP algorithm for airborne bistatic radars based on atomic selection under the Bayesian framework. This method adopts the idea of atomic selection for the process of Bayesian inference, continuously evaluating the contribution of atoms to the likelihood function to add or remove atoms, and then using the selected atoms to estimate the clutter support subspace and perform sparse recovery in the clutter support subspace. Due to the inherent sparsity of clutter signals, performing sparse recovery in the clutter support subspace avoids using a massive number of atoms from an overcomplete space-time dictionary, thereby greatly improving computational efficiency. In airborne bistatic radar scenarios where significant grid mismatch exists, this method can mitigate the performance degradation caused by grid mismatch by encrypting grid points. Since the sparse recovery is performed in the clutter support subspace, encrypting grid points does not lead to excessive computational burden. Additionally, this method integrates out the noise term under a new hierarchical Bayesian model, preventing the adverse effects caused by inaccurate noise power estimation during iterations in the traditional SR STAP algorithms, further enhancing its performance. Our simulation results demonstrate the high efficiency and superior clutter suppression performance and target detection performance of this method. 
653 |a Dictionaries 
653 |a Bayesian analysis 
653 |a Algorithms 
653 |a Radar 
653 |a Atomic properties 
653 |a Target detection 
653 |a Recovery 
653 |a Spacetime 
653 |a Multistatic radar 
653 |a Computer applications 
653 |a Methods 
653 |a Performance degradation 
653 |a Clutter 
653 |a Subspaces 
653 |a Airborne radar 
653 |a Statistical inference 
653 |a Space-time adaptive processing 
653 |a Efficiency 
653 |a Adaptive algorithms 
700 1 |a Wang, Tong 
700 1 |a Huang, Weijun 
773 0 |t Remote Sensing  |g vol. 16, no. 14 (2024), p. 2534 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3085010068/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3085010068/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3085010068/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch