Solving a Novel System of Time-Dependent Nuclear Reactor Equations of Fractional Order

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Symmetry vol. 16, no. 7 (2024), p. 831
Egile nagusia: Filali, Doaa
Beste egile batzuk: Shqair, Mohammed, Alghamdi, Fatemah A, Sherif Ismaeel, Hagag, Ahmed
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3085061669
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym16070831  |2 doi 
035 |a 3085061669 
045 2 |b d20240101  |b d20241231 
084 |a 231635  |2 nlm 
100 1 |a Filali, Doaa  |u Department of Mathematical Science, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia; <email>dkfilali@pnu.edu.sa</email> 
245 1 |a Solving a Novel System of Time-Dependent Nuclear Reactor Equations of Fractional Order 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Building upon the previous research that solved neutron diffusion equations in simplified slab geometry, this study advances the field by addressing the more complex cylindrical geometry, focusing on neutron diffusion equations that are coupled with delayed neutrons in cylindrical reactors of fractional order. The method of solving used integrates the technique of residual power series (RPS) with the Laplace transform (LT) method. Anomalous neutron behavior is explained by examining the non-Gaussian scenario with various fractional parameters α. The LRPSM Laplace transform and residual power series method employed in this approach eliminates the complex difficulties. This simplicity makes the method particularly coherent with different fractional calculus applications. To validate the proposed method, numerical simulations are conducted with two different initial conditions representing distinct scenarios. The obtained results are presented in suitable tables and figures. It should be emphasized that this system is solved for the first time utilizing fractional calculus techniques. The outcomes are consistent with those achieved using the Adomian decomposition method. 
653 |a Calculus 
653 |a Time dependence 
653 |a Laplace transforms 
653 |a Gaussian elimination 
653 |a Nuclear reactors 
653 |a Fractional calculus 
653 |a Geometry 
653 |a Initial conditions 
653 |a Power series 
700 1 |a Shqair, Mohammed  |u College of Science, Zarqa University, Zarqa 13110, Jordan; <email>mshqair@zu.edu.jo</email> 
700 1 |a Alghamdi, Fatemah A  |u Financial Sciences Department, Applied College, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; <email>faalghamdi@iau.edu.sa</email> 
700 1 |a Sherif Ismaeel  |u Department of Physics, Faculty of Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia; <email>s.hussien@psau.edu.sa</email>; Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt 
700 1 |a Hagag, Ahmed  |u Department of Basic Science, Faculty of Engineering, Sinai University, Ismailia 41636, Egypt 
773 0 |t Symmetry  |g vol. 16, no. 7 (2024), p. 831 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3085061669/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3085061669/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3085061669/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch