Multi-sensor data fusion and nonlinear programming-based path prediction for escaping from engagement in combat

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Archives of Control Sciences vol. 34, no. 2 (2024), p. 247
Κύριος συγγραφέας: Gökal, Enver Nurullah
Άλλοι συγγραφείς: Sakarya, Ufuk
Έκδοση:
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3085223265
003 UK-CbPIL
022 |a 1230-2384 
022 |a 2300-2611 
024 7 |a 10.24425/acs.2024.149660  |2 doi 
035 |a 3085223265 
045 2 |b d20240101  |b d20241231 
084 |a 188539  |2 nlm 
100 1 |a Gökal, Enver Nurullah 
245 1 |a Multi-sensor data fusion and nonlinear programming-based path prediction for escaping from engagement in combat 
260 |b De Gruyter Brill Sp. z o.o., Paradigm Publishing Services  |c 2024 
513 |a Journal Article 
520 3 |a One of the most important factors that bring success in modern warfare is to show air superiority. Unmanned aerial vehicles (UAVs) have now become an essential component of military air operations. UAVs can be operated in two ways: by pilots from remote control stations or by flying autonomously. Under the condition of disconnection from the control station, UAVs have trouble maintaining navigation and maneuverability. By applying multisensor data fusion, an escape path prediction algorithm was developed and presented as an engagement escape method in this study. To develop the algorithm for prediction of the optimal escape route, data from various sensors are collected and processed under the influence of noise. The data from the distance and angle sensors are interpreted in the Extended Kalman Filter and estimations are made. The instant optimal escape route is created by applying the constrained optimization method on the estimations made. The main motivation of this study is developing a deterministic-based method to get the certification of it in aviation. Therefore, instead of stochastic-based learning approaches, a deterministic approach is preferred. Nonlinear programming is used as the constraint optimization method because the constraints and objective function are nonlinear. In the selected scenarios, it can be seen in the simulation results that the proposed method shows a promising result in terms of escape from engagement. 
653 |a Sensors 
653 |a Unmanned aerial vehicles 
653 |a Optimization 
653 |a Remote control 
653 |a Remote sensors 
653 |a Algorithms 
653 |a Data integration 
653 |a Military aviation 
653 |a Extended Kalman filter 
653 |a Constraints 
653 |a Noise prediction (aircraft) 
653 |a Path predictors 
653 |a Multisensor fusion 
653 |a Nonlinear programming 
700 1 |a Sakarya, Ufuk 
773 0 |t Archives of Control Sciences  |g vol. 34, no. 2 (2024), p. 247 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3085223265/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3085223265/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch