LLASP: Fine-tuning Large Language Models for Answer Set Programming

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jul 26, 2024), p. n/a
Autor principal: Coppolillo, Erica
Otros Autores: Calimeri, Francesco, Manco, Giuseppe, Perri, Simona, Ricca, Francesco
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3085747160
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3085747160 
045 0 |b d20240726 
100 1 |a Coppolillo, Erica 
245 1 |a LLASP: Fine-tuning Large Language Models for Answer Set Programming 
260 |b Cornell University Library, arXiv.org  |c Jul 26, 2024 
513 |a Working Paper 
520 3 |a Recently, Large Language Models (LLMs) have showcased their potential in various natural language processing tasks, including code generation. However, while significant progress has been made in adapting LLMs to generate code for several imperative programming languages and tasks, there remains a notable gap in their application to declarative formalisms, such as Answer Set Programming (ASP). In this paper, we move a step towards exploring the capabilities of LLMs for ASP code generation. First, we perform a systematic evaluation of several state-of-the-art LLMs. Despite their power in terms of number of parameters, training data and computational resources, empirical results demonstrate inadequate performances in generating correct ASP programs. Therefore, we propose LLASP, a fine-tuned lightweight model specifically trained to encode fundamental ASP program patterns. To this aim, we create an ad-hoc dataset covering a wide variety of fundamental problem specifications that can be encoded in ASP. Our experiments demonstrate that the quality of ASP programs generated by LLASP is remarkable. This holds true not only when compared to the non-fine-tuned counterpart but also when compared to the majority of eager LLM candidates, particularly from a semantic perspective. All the code and data used to perform the experiments are publicly available at https://anonymous.4open.science/r/LLASP-D86C/. 
653 |a Declarative programming 
653 |a Large language models 
653 |a Natural language processing 
653 |a Imperative programming 
653 |a Mathematical programming 
653 |a Programming languages 
653 |a State-of-the-art reviews 
653 |a Speech recognition 
700 1 |a Calimeri, Francesco 
700 1 |a Manco, Giuseppe 
700 1 |a Perri, Simona 
700 1 |a Ricca, Francesco 
773 0 |t arXiv.org  |g (Jul 26, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3085747160/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.18723