Using Total Margin of Error to Account for Non-Sampling Error in Election Polls: The Case of Nonresponse

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:arXiv.org (Oct 31, 2024), p. n/a
Päätekijä: Dominitz, Jeff
Muut tekijät: Manski, Charles F
Julkaistu:
Cornell University Library, arXiv.org
Aiheet:
Linkit:Citation/Abstract
Full text outside of ProQuest
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3086142484
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3086142484 
045 0 |b d20241031 
100 1 |a Dominitz, Jeff 
245 1 |a Using Total Margin of Error to Account for Non-Sampling Error in Election Polls: The Case of Nonresponse 
260 |b Cornell University Library, arXiv.org  |c Oct 31, 2024 
513 |a Working Paper 
520 3 |a The potential impact of non-sampling errors on election polls is well known, but measurement has focused on the margin of sampling error. Survey statisticians have long recommended measurement of total survey error by mean square error (MSE), which jointly measures sampling and non-sampling errors. We think it reasonable to use the square root of maximum MSE to measure the total margin of error (TME). Measurement of TME should encompass both sampling error and all forms of non-sampling error. We suggest that measurement of TME should be a standard feature in the reporting of polls. To provide a clear illustration, and because we believe the exceedingly low response rates commonly obtained by election polls to be a particularly worrisome source of potential error, we demonstrate how to measure the potential impact of nonresponse using the concept of TME. We first show how to measure TME when a pollster lacks any knowledge of the candidate preferences of nonrespondents. We then extend the analysis to settings where the pollster has partial knowledge that bounds the preferences of non-respondents. In each setting, we derive a simple poll estimate that approximately minimizes TME, a midpoint estimate, and compare it to a conventional poll estimate. 
653 |a Elections 
653 |a Error analysis 
653 |a Sampling error 
653 |a Response bias 
653 |a Sampling 
700 1 |a Manski, Charles F 
773 0 |t arXiv.org  |g (Oct 31, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3086142484/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.19339