Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jul 28, 2024), p. n/a
Autor principal: Li, Honglin
Altres autors: Sun, Yusuan, Zhu, Chenglu, Zhang, Yunlong, Zhang, Shichuan, Shui, Zhongyi, Chen, Pingyi, Li, Jingxiong, Zheng, Sunyi, Cui, Can, Yang, Lin
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3086144131
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3086144131 
045 0 |b d20240728 
100 1 |a Li, Honglin 
245 1 |a Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis 
260 |b Cornell University Library, arXiv.org  |c Jul 28, 2024 
513 |a Working Paper 
520 3 |a Cervical Cancer continues to be the leading gynecological malignancy, posing a persistent threat to women's health on a global scale. Early screening via cytology Whole Slide Image (WSI) diagnosis is critical to prevent this Cancer progression and improve survival rate, but pathologist's single test suffers inevitable false negative due to the immense number of cells that need to be reviewed within a WSI. Though computer-aided automated diagnostic models can serve as strong complement for pathologists, their effectiveness is hampered by the paucity of extensive and detailed annotations, coupled with the limited interpretability and robustness. These factors significantly hinder their practical applicability and reliability in clinical settings. To tackle these challenges, we develop an AI approach, which is a Scalable Technology for Robust and Interpretable Diagnosis built on Extensive data (STRIDE) of cervical cytology. STRIDE addresses the bottleneck of limited annotations by integrating patient-level labels with a small portion of cell-level labels through an end-to-end training strategy, facilitating scalable learning across extensive datasets. To further improve the robustness to real-world domain shifts of cytology slide-making and imaging, STRIDE employs color adversarial samples training that mimic staining and imaging variations. Lastly, to achieve pathologist-level interpretability for the trustworthiness in clinical settings, STRIDE can generate explanatory textual descriptions that simulates pathologists' diagnostic processes by cell image feature and textual description alignment. Conducting extensive experiments and evaluations in 183 medical centers with a dataset of 341,889 WSIs and 0.1 billion cells from cervical cytology patients, STRIDE has demonstrated a remarkable superiority over previous state-of-the-art techniques. 
653 |a Cellular biology 
653 |a Health care facilities 
653 |a Datasets 
653 |a Womens health 
653 |a Image analysis 
653 |a Labels 
653 |a Cancer 
653 |a Medical imaging 
653 |a Diagnosis 
653 |a Diagnostic systems 
653 |a Computer aided testing 
653 |a Annotations 
653 |a Cytology 
653 |a Robustness 
700 1 |a Sun, Yusuan 
700 1 |a Zhu, Chenglu 
700 1 |a Zhang, Yunlong 
700 1 |a Zhang, Shichuan 
700 1 |a Shui, Zhongyi 
700 1 |a Chen, Pingyi 
700 1 |a Li, Jingxiong 
700 1 |a Zheng, Sunyi 
700 1 |a Cui, Can 
700 1 |a Yang, Lin 
773 0 |t arXiv.org  |g (Jul 28, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3086144131/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.19512