Riemannian Geometry-Based EEG Approaches: A Literature Review

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Jul 19, 2024), p. n/a
Hovedforfatter: Tibermacine, Imad Eddine
Andre forfattere: Russo, Samuele, Tibermacine, Ahmed, Rabehi, Abdelaziz, Nail, Bachir, Kamel Kadri, Napoli, Christian
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3086453655
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3086453655 
045 0 |b d20240719 
100 1 |a Tibermacine, Imad Eddine 
245 1 |a Riemannian Geometry-Based EEG Approaches: A Literature Review 
260 |b Cornell University Library, arXiv.org  |c Jul 19, 2024 
513 |a Working Paper 
520 3 |a The application of Riemannian geometry in the decoding of brain-computer interfaces (BCIs) has swiftly garnered attention because of its straightforwardness, precision, and resilience, along with its aptitude for transfer learning, which has been demonstrated through significant achievements in global BCI competitions. This paper presents a comprehensive review of recent advancements in the integration of deep learning with Riemannian geometry to enhance EEG signal decoding in BCIs. Our review updates the findings since the last major review in 2017, comparing modern approaches that utilize deep learning to improve the handling of non-Euclidean data structures inherent in EEG signals. We discuss how these approaches not only tackle the traditional challenges of noise sensitivity, non-stationarity, and lengthy calibration times but also introduce novel classification frameworks and signal processing techniques to reduce these limitations significantly. Furthermore, we identify current shortcomings and propose future research directions in manifold learning and riemannian-based classification, focusing on practical implementations and theoretical expansions, such as feature tracking on manifolds, multitask learning, feature extraction, and transfer learning. This review aims to bridge the gap between theoretical research and practical, real-world applications, making sophisticated mathematical approaches accessible and actionable for BCI enhancements. 
653 |a Feature extraction 
653 |a Deep learning 
653 |a Signal processing 
653 |a Human-computer interface 
653 |a Noise sensitivity 
653 |a Data structures 
653 |a Signal classification 
653 |a Manifolds (mathematics) 
653 |a Electroencephalography 
653 |a Machine learning 
653 |a Geometry 
653 |a Euclidean geometry 
653 |a Literature reviews 
700 1 |a Russo, Samuele 
700 1 |a Tibermacine, Ahmed 
700 1 |a Rabehi, Abdelaziz 
700 1 |a Nail, Bachir 
700 1 |a Kamel Kadri 
700 1 |a Napoli, Christian 
773 0 |t arXiv.org  |g (Jul 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3086453655/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.20250