Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Aug 6, 2024), p. n/a
Autor principal: Xu, Hao
Otros Autores: Zhang, Xi, Wu, Xiaolin
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3090049665
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3090049665 
045 0 |b d20240806 
100 1 |a Xu, Hao 
245 1 |a Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement 
260 |b Cornell University Library, arXiv.org  |c Aug 6, 2024 
513 |a Working Paper 
520 3 |a Compressing a set of unordered points is far more challenging than compressing images/videos of regular sample grids, because of the difficulties in characterizing neighboring relations in an irregular layout of points. Many researchers resort to voxelization to introduce regularity, but this approach suffers from quantization loss. In this research, we use the KNN method to determine the neighborhoods of raw surface points. This gives us a means to determine the spatial context in which the latent features of 3D points are compressed by arithmetic coding. As such, the conditional probability model is adaptive to local geometry, leading to significant rate reduction. Additionally, we propose a dual-layer architecture where a non-learning base layer reconstructs the main structures of the point cloud at low complexity, while a learned refinement layer focuses on preserving fine details. This design leads to reductions in model complexity and coding latency by two orders of magnitude compared to SOTA methods. Moreover, we incorporate an implicit neural representation (INR) into the refinement layer, allowing the decoder to sample points on the underlying surface at arbitrary densities. This work is the first to effectively exploit content-aware local contexts for compressing irregular raw point clouds, achieving high rate-distortion performance, low complexity, and the ability to function as an arbitrary-scale upsampling network simultaneously. 
653 |a Image coding 
653 |a Image compression 
653 |a Arithmetic coding 
653 |a Conditional probability 
653 |a Complexity 
653 |a Image reconstruction 
653 |a Context 
653 |a Compressing 
653 |a Three dimensional models 
653 |a Network latency 
700 1 |a Zhang, Xi 
700 1 |a Wu, Xiaolin 
773 0 |t arXiv.org  |g (Aug 6, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3090049665/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.02966