Adaptive QSMO-Based Sensorless Drive for IPM Motor with NN-Based Transient Position Error Compensation
Gespeichert in:
| Veröffentlicht in: | Electronics vol. 13, no. 15 (2024), p. 3085 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , |
| Veröffentlicht: |
MDPI AG
|
| Schlagworte: | |
| Online-Zugang: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Keine Tags, Fügen Sie das erste Tag hinzu!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3090897950 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2079-9292 | ||
| 024 | 7 | |a 10.3390/electronics13153085 |2 doi | |
| 035 | |a 3090897950 | ||
| 045 | 2 | |b d20240101 |b d20241231 | |
| 084 | |a 231458 |2 nlm | ||
| 100 | 1 | |a Sun, Linfeng |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) | |
| 245 | 1 | |a Adaptive QSMO-Based Sensorless Drive for IPM Motor with NN-Based Transient Position Error Compensation | |
| 260 | |b MDPI AG |c 2024 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a In commercial electrical equipment, the popular sensorless drive scheme for the interior permanent magnet synchronous motor, based on the quasi-sliding mode observer (QSMO) and phase-locked loop (PLL), still faces challenges such as position errors and limited applicability across a wide speed range. To address these problems, this paper analyzes the frequency domain model of the QSMO. A QSMO-based parameter adaptation method is proposed to adjust the boundary layer and widen the speed operating range, considering the QSMO bandwidth. A QSMO-based phase lag compensation method is proposed to mitigate steady-state position errors, considering the QSMO phase lag. Then, the PLL model is analyzed to select the estimated speed difference for transient position error compensation. Specifically, a transient position error compensator based on a feedback time delay neural network (FB-TDNN) is proposed. Based on the back propagation learning algorithm, the specific structure and optimal parameters of the FB-TDNN are determined during the offline training process. The proposed parameter adaptation method and two position error compensation methods were validated through simulations in simulated wide-speed operation scenarios, including sudden speed changes. Overall, the proposed scheme fully mitigates steady-state position errors, substantially mitigates transient position errors, and exhibits good stability across a wide speed range. | |
| 653 | |a Phase lag | ||
| 653 | |a Coordinate transformations | ||
| 653 | |a Neural networks | ||
| 653 | |a Phase locked loops | ||
| 653 | |a Position sensing | ||
| 653 | |a Bandwidths | ||
| 653 | |a Compensators | ||
| 653 | |a Sensors | ||
| 653 | |a Back propagation networks | ||
| 653 | |a Steady state | ||
| 653 | |a Adaptation | ||
| 653 | |a Synchronous motors | ||
| 653 | |a Design | ||
| 653 | |a Algorithms | ||
| 653 | |a Electrical equipment | ||
| 653 | |a Error analysis | ||
| 653 | |a Methods | ||
| 653 | |a Machine learning | ||
| 653 | |a Boundary layers | ||
| 653 | |a Parameters | ||
| 653 | |a Permanent magnets | ||
| 653 | |a Electric equipment | ||
| 653 | |a Error compensation | ||
| 653 | |a Position errors | ||
| 700 | 1 | |a Guo, Jiawei |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) | |
| 700 | 1 | |a Jiang, Xiongwen |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) | |
| 700 | 1 | |a Kawaguchi, Takahiro |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) | |
| 700 | 1 | |a Hashimoto, Seiji |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) | |
| 700 | 1 | |a Jiang, Wei |u Department of Electrical Engineering, Yangzhou University, Yangzhou 225127, China; <email>jiangwei@yzu.edu.cn</email> | |
| 773 | 0 | |t Electronics |g vol. 13, no. 15 (2024), p. 3085 | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3090897950/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3090897950/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3090897950/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |