Adaptive QSMO-Based Sensorless Drive for IPM Motor with NN-Based Transient Position Error Compensation

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics vol. 13, no. 15 (2024), p. 3085
1. Verfasser: Sun, Linfeng
Weitere Verfasser: Guo, Jiawei, Jiang, Xiongwen, Kawaguchi, Takahiro, Hashimoto, Seiji, Jiang, Wei
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3090897950
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics13153085  |2 doi 
035 |a 3090897950 
045 2 |b d20240101  |b d20241231 
084 |a 231458  |2 nlm 
100 1 |a Sun, Linfeng  |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) 
245 1 |a Adaptive QSMO-Based Sensorless Drive for IPM Motor with NN-Based Transient Position Error Compensation 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a In commercial electrical equipment, the popular sensorless drive scheme for the interior permanent magnet synchronous motor, based on the quasi-sliding mode observer (QSMO) and phase-locked loop (PLL), still faces challenges such as position errors and limited applicability across a wide speed range. To address these problems, this paper analyzes the frequency domain model of the QSMO. A QSMO-based parameter adaptation method is proposed to adjust the boundary layer and widen the speed operating range, considering the QSMO bandwidth. A QSMO-based phase lag compensation method is proposed to mitigate steady-state position errors, considering the QSMO phase lag. Then, the PLL model is analyzed to select the estimated speed difference for transient position error compensation. Specifically, a transient position error compensator based on a feedback time delay neural network (FB-TDNN) is proposed. Based on the back propagation learning algorithm, the specific structure and optimal parameters of the FB-TDNN are determined during the offline training process. The proposed parameter adaptation method and two position error compensation methods were validated through simulations in simulated wide-speed operation scenarios, including sudden speed changes. Overall, the proposed scheme fully mitigates steady-state position errors, substantially mitigates transient position errors, and exhibits good stability across a wide speed range. 
653 |a Phase lag 
653 |a Coordinate transformations 
653 |a Neural networks 
653 |a Phase locked loops 
653 |a Position sensing 
653 |a Bandwidths 
653 |a Compensators 
653 |a Sensors 
653 |a Back propagation networks 
653 |a Steady state 
653 |a Adaptation 
653 |a Synchronous motors 
653 |a Design 
653 |a Algorithms 
653 |a Electrical equipment 
653 |a Error analysis 
653 |a Methods 
653 |a Machine learning 
653 |a Boundary layers 
653 |a Parameters 
653 |a Permanent magnets 
653 |a Electric equipment 
653 |a Error compensation 
653 |a Position errors 
700 1 |a Guo, Jiawei  |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) 
700 1 |a Jiang, Xiongwen  |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) 
700 1 |a Kawaguchi, Takahiro  |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) 
700 1 |a Hashimoto, Seiji  |u Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan; <email>felicityslf@outlook.com</email> (L.S.); <email>jiaweiguoguo@outlook.com</email> (J.G.); <email>t212d601@gunma-u.ac.jp</email> (X.J.); <email>kawaguchi@gunma-u.ac.jp</email> (T.K.) 
700 1 |a Jiang, Wei  |u Department of Electrical Engineering, Yangzhou University, Yangzhou 225127, China; <email>jiangwei@yzu.edu.cn</email> 
773 0 |t Electronics  |g vol. 13, no. 15 (2024), p. 3085 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3090897950/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3090897950/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3090897950/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch