Study on environmental monitoring classification system based on improved bayesian algorithm

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Journal of Physics: Conference Series vol. 2813, no. 1 (Aug 2024), p. 012011
मुख्य लेखक: Guo, Xiaoyan
प्रकाशित:
IOP Publishing
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3090935726
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/2813/1/012011  |2 doi 
035 |a 3090935726 
045 2 |b d20240801  |b d20240831 
100 1 |a Guo, Xiaoyan 
245 1 |a Study on environmental monitoring classification system based on improved bayesian algorithm 
260 |b IOP Publishing  |c Aug 2024 
513 |a Journal Article 
520 3 |a The commonly used methods for classifying water quality data are based on water quality parameters. The naive Bayesian classification method can be applied to substitute different evaluation criteria and selected water quality parameters for different water bodies. Compared to other water quality data classification methods, naive Bayesian classification methods have advantages such as simple calculation, high classification accuracy, and strong universality. However, this method overlooks the correlation between various water quality parameters and categories. To address the issues of poor universality, computational complexity, and low accuracy of traditional water quality data classification methods, a water quality data classification method based on weighted naive Bayes is proposed. This method comprehensively considers the impact of water quality attributes and their values on the classification results and replaces the original naive Bayes with weighted attribute conditional probabilities to make the classification results as close as possible to the actual category of the sample. The results indicate that this method exceeds 94% accuracy and can be directly utilized as a water quality classification module in water quality monitoring systems. 
653 |a Water quality 
653 |a Quality management 
653 |a Algorithms 
653 |a Accuracy 
653 |a Methods 
653 |a Classification 
653 |a Bayesian analysis 
653 |a Parameters 
653 |a Environmental monitoring 
773 0 |t Journal of Physics: Conference Series  |g vol. 2813, no. 1 (Aug 2024), p. 012011 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3090935726/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3090935726/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch