MCHIAO: a modified coronavirus herd immunity-Aquila optimization algorithm based on chaotic behavior for solving engineering problems

Guardado en:
Detalles Bibliográficos
Publicado en:Neural Computing & Applications vol. 36, no. 22 (Aug 2024), p. 13381
Autor principal: Selim, Heba
Otros Autores: Haikal, Amira Y., Labib, Labib M., Saafan, Mahmoud M.
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3091014029
003 UK-CbPIL
022 |a 0941-0643 
022 |a 1433-3058 
024 7 |a 10.1007/s00521-024-09533-0  |2 doi 
035 |a 3091014029 
045 2 |b d20240801  |b d20240831 
100 1 |a Selim, Heba  |u Mansoura University, Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura, Egypt (GRID:grid.10251.37) (ISNI:0000 0001 0342 6662) 
245 1 |a MCHIAO: a modified coronavirus herd immunity-Aquila optimization algorithm based on chaotic behavior for solving engineering problems 
260 |b Springer Nature B.V.  |c Aug 2024 
513 |a Journal Article 
520 3 |a This paper proposes a hybrid Modified Coronavirus Herd Immunity Aquila Optimization Algorithm (MCHIAO) that compiles the Enhanced Coronavirus Herd Immunity Optimizer (ECHIO) algorithm and Aquila Optimizer (AO). As one of the competitive human-based optimization algorithms, the Coronavirus Herd Immunity Optimizer (CHIO) exceeds some other biological-inspired algorithms. Compared to other optimization algorithms, CHIO showed good results. However, CHIO gets confined to local optima, and the accuracy of large-scale global optimization problems is decreased. On the other hand, although AO has significant local exploitation capabilities, its global exploration capabilities are insufficient. Subsequently, a novel metaheuristic optimizer, Modified Coronavirus Herd Immunity Aquila Optimizer (MCHIAO), is presented to overcome these restrictions and adapt it to solve feature selection challenges. In this paper, MCHIAO is proposed with three main enhancements to overcome these issues and reach higher optimal results which are cases categorizing, enhancing the new genes’ value equation using the chaotic system as inspired by the chaotic behavior of the coronavirus and generating a new formula to switch between expanded and narrowed exploitation. MCHIAO demonstrates it’s worth contra ten well-known state-of-the-art optimization algorithms (GOA, MFO, MPA, GWO, HHO, SSA, WOA, IAO, NOA, NGO) in addition to AO and CHIO. Friedman average rank and Wilcoxon statistical analysis (p-value) are conducted on all state-of-the-art algorithms testing 23 benchmark functions. Wilcoxon test and Friedman are conducted as well on the 29 CEC2017 functions. Moreover, some statistical tests are conducted on the 10 CEC2019 benchmark functions. Six real-world problems are used to validate the proposed MCHIAO against the same twelve state-of-the-art algorithms. On classical functions, including 24 unimodal and 44 multimodal functions, respectively, the exploitative and explorative behavior of the hybrid algorithm MCHIAO is evaluated. The statistical significance of the proposed technique for all functions is demonstrated by the p-values calculated using the Wilcoxon rank-sum test, as these p-values are found to be less than 0.05. 
653 |a Algorithms 
653 |a Statistical analysis 
653 |a Optimization algorithms 
653 |a Coronaviruses 
653 |a Herd immunity 
653 |a Global optimization 
653 |a Chaos theory 
653 |a Statistical tests 
653 |a Biological effects 
653 |a Exploitation 
653 |a Benchmarks 
653 |a Heuristic methods 
700 1 |a Haikal, Amira Y.  |u Mansoura University, Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura, Egypt (GRID:grid.10251.37) (ISNI:0000 0001 0342 6662) 
700 1 |a Labib, Labib M.  |u Mansoura University, Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura, Egypt (GRID:grid.10251.37) (ISNI:0000 0001 0342 6662) 
700 1 |a Saafan, Mahmoud M.  |u Mansoura University, Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura, Egypt (GRID:grid.10251.37) (ISNI:0000 0001 0342 6662) 
773 0 |t Neural Computing & Applications  |g vol. 36, no. 22 (Aug 2024), p. 13381 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3091014029/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3091014029/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch