Exploring RAG-based Vulnerability Augmentation with LLMs

保存先:
書誌詳細
出版年:arXiv.org (Dec 5, 2024), p. n/a
第一著者: Seyed Shayan Daneshvar
その他の著者: Yu, Nong, Xu, Yang, Wang, Shaowei, Cai, Haipeng
出版事項:
Cornell University Library, arXiv.org
主題:
オンライン・アクセス:Citation/Abstract
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
抄録:Detecting vulnerabilities is vital for software security, yet deep learning-based vulnerability detectors (DLVD) face a data shortage, which limits their effectiveness. Data augmentation can potentially alleviate the data shortage, but augmenting vulnerable code is challenging and requires a generative solution that maintains vulnerability. Previous works have only focused on generating samples that contain single statements or specific types of vulnerabilities. Recently, large language models (LLMs) have been used to solve various code generation and comprehension tasks with inspiring results, especially when fused with retrieval augmented generation (RAG). Therefore, we propose VulScribeR, a novel LLM-based solution that leverages carefully curated prompt templates to augment vulnerable datasets. More specifically, we explore three strategies to augment both single and multi-statement vulnerabilities, with LLMs, namely Mutation, Injection, and Extension. Our extensive evaluation across three vulnerability datasets and DLVD models, using two LLMs, show that our approach beats two SOTA methods Vulgen and VGX, and Random Oversampling (ROS) by 27.48%, 27.93%, and 15.41% in f1-score with 5K generated vulnerable samples on average, and 53.84%, 54.10%, 69.90%, and 40.93% with 15K generated vulnerable samples. Our approach demonstrates its feasibility for large-scale data augmentation by generating 1K samples at as cheap as US$ 1.88.
ISSN:2331-8422
ソース:Engineering Database