An FPGA-based hardware accelerator supporting sensitive sequence homology filtering with profile hidden Markov models

Spremljeno u:
Bibliografski detalji
Izdano u:BMC Bioinformatics vol. 25 (2024), p. 1
Glavni autor: Anderson, Tim
Daljnji autori: Wheeler, Travis J
Izdano:
Springer Nature B.V.
Teme:
Online pristup:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3091290016
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-024-05879-3  |2 doi 
035 |a 3091290016 
045 2 |b d20240101  |b d20241231 
084 |a 58459  |2 nlm 
100 1 |a Anderson, Tim 
245 1 |a An FPGA-based hardware accelerator supporting sensitive sequence homology filtering with profile hidden Markov models 
260 |b Springer Nature B.V.  |c 2024 
513 |a Journal Article 
520 3 |a BackgroundSequence alignment lies at the heart of genome sequence annotation. While the BLAST suite of alignment tools has long held an important role in alignment-based sequence database search, greater sensitivity is achieved through the use of profile hidden Markov models (pHMMs). Here, we describe an FPGA hardware accelerator, called HAVAC, that targets a key bottleneck step (SSV) in the analysis pipeline of the popular pHMM alignment tool, HMMER.ResultsThe HAVAC kernel calculates the SSV matrix at 1739 GCUPS on a \(\sim\) $3000 Xilinx Alveo U50 FPGA accelerator card, \(\sim\) 227× faster than the optimized SSV implementation in nhmmer. Accounting for PCI-e data transfer data processing, HAVAC is 65× faster than nhmmer’s SSV with one thread and 35× faster than nhmmer with four threads, and uses \(\sim\) 31% the energy of a traditional high end Intel CPU.ConclusionsHAVAC demonstrates the potential offered by FPGA hardware accelerators to produce dramatic speed gains in sequence annotation and related bioinformatics applications. Because these computations are performed on a co-processor, the host CPU remains free to simultaneously compute other aspects of the analysis pipeline. 
653 |a Data transfer (computers) 
653 |a Central processing units--CPUs 
653 |a Alignment 
653 |a Data processing 
653 |a Markov chains 
653 |a Accelerator cards 
653 |a Hardware 
653 |a Homology 
653 |a Microprocessors 
653 |a Bioinformatics 
653 |a Pipelining (computers) 
653 |a Genomes 
653 |a Annotations 
653 |a Algorithms 
653 |a Field programmable gate arrays 
653 |a Nucleotide sequence 
653 |a Bus interconnections 
700 1 |a Wheeler, Travis J 
773 0 |t BMC Bioinformatics  |g vol. 25 (2024), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3091290016/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3091290016/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3091290016/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch