A discrete dwarf mongoose optimization algorithm to solve task assignment problems on smart farms

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Cluster Computing vol. 27, no. 5 (Aug 2024), p. 6185
Tác giả chính: Xu, Minzhi
Tác giả khác: Li, Weidong, Zhang, Xuejie, Su, Qian
Được phát hành:
Springer Nature B.V.
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3092151769
003 UK-CbPIL
022 |a 1386-7857 
022 |a 1573-7543 
024 7 |a 10.1007/s10586-024-04271-3  |2 doi 
035 |a 3092151769 
045 2 |b d20240801  |b d20240831 
100 1 |a Xu, Minzhi  |u Yunnan University, School of Information Science and Engineering, Kunming, China (GRID:grid.440773.3) (ISNI:0000 0000 9342 2456) 
245 1 |a A discrete dwarf mongoose optimization algorithm to solve task assignment problems on smart farms 
260 |b Springer Nature B.V.  |c Aug 2024 
513 |a Journal Article 
520 3 |a In this study, we propose a novel cloud-edge collaborative task assignment model for smart farms that consists of a cloud server, m edge servers, and n sensors. The edge servers rely solely on solar-generated energy, which is limited, whereas the cloud server has access to a limitless amount of energy supplied by the smart grid. Each entire task from a sensor is processed by either an edge server or the cloud server. We consider the task to be unsplittable. Building on the algorithm for the multimachine job scheduling problem, we develop a corresponding approximation algorithm. In addition, we propose a new discrete heuristic based on the dwarf mongoose optimization algorithmm, named the discrete dwarf mongoose optimization algorithm, and we utilize the proposed approximation algorithm to improve the convergence speed of this heuristic while yielding better solutions. In this study, we consider task sets with heavy tasks independently, where a heavy task is a task that requires many computing resources to process. If such tasks are assigned as ordinary tasks, the assignment results may be poor. Therefore, we propose a new method to solve this kind of problem. 
653 |a Mathematical programming 
653 |a Scheduling 
653 |a Heuristic 
653 |a Computer centers 
653 |a Task scheduling 
653 |a Deep learning 
653 |a Collaboration 
653 |a Servers 
653 |a Mathematical models 
653 |a Cloud computing 
653 |a Neural networks 
653 |a Sensors 
653 |a Optimization 
653 |a Edge computing 
653 |a Convex analysis 
653 |a Approximation 
653 |a Algorithms 
653 |a Smart grid 
653 |a Optimization algorithms 
653 |a Energy consumption 
653 |a Smart sensors 
700 1 |a Li, Weidong  |u Yunnan University, School of Mathematics and Statistics, Kunming, China (GRID:grid.440773.3) (ISNI:0000 0000 9342 2456) 
700 1 |a Zhang, Xuejie  |u Yunnan University, School of Information Science and Engineering, Kunming, China (GRID:grid.440773.3) (ISNI:0000 0000 9342 2456) 
700 1 |a Su, Qian  |u Yunnan University, School of Information Science and Engineering, Kunming, China (GRID:grid.440773.3) (ISNI:0000 0000 9342 2456) 
773 0 |t Cluster Computing  |g vol. 27, no. 5 (Aug 2024), p. 6185 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3092151769/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3092151769/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3092151769/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch