Monte Carlo Path Tracing and Statistical Event Detection for Event Camera Simulation

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Aug 15, 2024), p. n/a
1. Verfasser: Manabe, Yuichiro
Weitere Verfasser: Yatagawa, Tatsuya, Morishima, Shigeo, Kubo, Hiroyuki
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3093677258
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3093677258 
045 0 |b d20240815 
100 1 |a Manabe, Yuichiro 
245 1 |a Monte Carlo Path Tracing and Statistical Event Detection for Event Camera Simulation 
260 |b Cornell University Library, arXiv.org  |c Aug 15, 2024 
513 |a Working Paper 
520 3 |a This paper presents a novel event camera simulation system fully based on physically based Monte Carlo path tracing with adaptive path sampling. The adaptive sampling performed in the proposed method is based on a statistical technique, hypothesis testing for the hypothesis whether the difference of logarithmic luminances at two distant periods is significantly larger than a predefined event threshold. To this end, our rendering system collects logarithmic luminances rather than raw luminance in contrast to the conventional rendering system imitating conventional RGB cameras. Then, based on the central limit theorem, we reasonably assume that the distribution of the population mean of logarithmic luminance can be modeled as a normal distribution, allowing us to model the distribution of the difference of logarithmic luminance as a normal distribution. Then, using Student's t-test, we can test the hypothesis and determine whether to discard the null hypothesis for event non-occurrence. When we sample a sufficiently large number of path samples to satisfy the central limit theorem and obtain a clean set of events, our method achieves significant speed up compared to a simple approach of sampling paths uniformly at every pixel. To our knowledge, we are the first to simulate the behavior of event cameras in a physically accurate manner using an adaptive sampling technique in Monte Carlo path tracing, and we believe this study will contribute to the development of computer vision applications using event cameras. 
653 |a Logarithms 
653 |a Null hypothesis 
653 |a Cameras 
653 |a Rendering 
653 |a Adaptive systems 
653 |a Hypothesis testing 
653 |a Luminance 
653 |a Hypotheses 
653 |a Sampling methods 
653 |a Adaptive sampling 
653 |a Normal distribution 
653 |a Theorems 
653 |a Computer vision 
653 |a Tracing 
653 |a Statistical analysis 
653 |a Central limit theorem 
653 |a Luminance distribution 
700 1 |a Yatagawa, Tatsuya 
700 1 |a Morishima, Shigeo 
700 1 |a Kubo, Hiroyuki 
773 0 |t arXiv.org  |g (Aug 15, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3093677258/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.07996