Symbolic Parameter Learning in Probabilistic Answer Set Programming

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Aug 16, 2024), p. n/a
Autore principale: Azzolini, Damiano
Altri autori: Gentili, Elisabetta, Riguzzi, Fabrizio
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3094565256
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3094565256 
045 0 |b d20240816 
100 1 |a Azzolini, Damiano 
245 1 |a Symbolic Parameter Learning in Probabilistic Answer Set Programming 
260 |b Cornell University Library, arXiv.org  |c Aug 16, 2024 
513 |a Working Paper 
520 3 |a Parameter learning is a crucial task in the field of Statistical Relational Artificial Intelligence: given a probabilistic logic program and a set of observations in the form of interpretations, the goal is to learn the probabilities of the facts in the program such that the probabilities of the interpretations are maximized. In this paper, we propose two algorithms to solve such a task within the formalism of Probabilistic Answer Set Programming, both based on the extraction of symbolic equations representing the probabilities of the interpretations. The first solves the task using an off-the-shelf constrained optimization solver while the second is based on an implementation of the Expectation Maximization algorithm. Empirical results show that our proposals often outperform existing approaches based on projected answer set enumeration in terms of quality of the solution and in terms of execution time. The paper has been accepted at the ICLP2024 conference and is under consideration in Theory and Practice of Logic Programming (TPLP). 
653 |a Logic programming 
653 |a Algorithms 
653 |a Declarative programming 
653 |a Enumeration 
653 |a Learning 
653 |a Logic programs 
653 |a Artificial intelligence 
653 |a Statistical analysis 
653 |a Parameters 
653 |a Mathematical programming 
700 1 |a Gentili, Elisabetta 
700 1 |a Riguzzi, Fabrizio 
773 0 |t arXiv.org  |g (Aug 16, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3094565256/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.08732