Clock synchronization and light-travel-time estimation for space-based gravitational-wave detectors

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:arXiv.org (Aug 19, 2024), p. n/a
Prif Awdur: Jan Niklas Reinhardt
Awduron Eraill: Hartwig, Olaf, Heinzel, Gerhard
Cyhoeddwyd:
Cornell University Library, arXiv.org
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full text outside of ProQuest
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3094925780
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3094925780 
045 0 |b d20240819 
100 1 |a Jan Niklas Reinhardt 
245 1 |a Clock synchronization and light-travel-time estimation for space-based gravitational-wave detectors 
260 |b Cornell University Library, arXiv.org  |c Aug 19, 2024 
513 |a Working Paper 
520 3 |a Space-based gravitational-wave detectors, such as LISA, record interferometric measurements on widely separated satellites. Their clocks are not synced actively. Instead, clock synchronization is performed in on-ground data processing. It relies on measurements of the so-called pseudoranges, which entangle the interspacecraft light travel times with the clock desynchronizations between emitting and receiving spacecraft. For interspacecraft clock synchronization, we need to isolate the differential clock desynchronizations, i.e., disentangle the pseudoranges. This further yields estimates for the interspacecraft light travel times, which are required as delays for the laser frequency noise suppression via time-delay interferometry. Previous studies on pseudorange disentanglement apply various simplifications in the pseudorange modeling and the data simulation. In contrast, this article derives an accurate pseudorange model in the barycentric celestial reference system, complemented by realistic state-of-the-art LISA data simulations. Concerning pseudorange disentanglement, this leads to an a priori under-determined system. We demonstrate how on-ground orbit determinations, as well as onboard transmission and on-ground reception time tags of the telemetry data, can be used to resolve this degeneracy. We introduce an algorithm for pseudorange disentanglement based on a nonstandard Kalman filter specially designed for clock synchronization in systems where pseudorange measurements are conducted in different time frames. This algorithm achieves interspacecraft clock synchronization and light travel time estimation with submeter accuracy, thus fulfilling the requirements of time-delay interferometry. 
653 |a Detectors 
653 |a Data processing 
653 |a Interferometry 
653 |a Reference systems 
653 |a Data simulation 
653 |a Clocks 
653 |a Noise reduction 
653 |a Travel time 
653 |a Clock synchronization 
653 |a Gravitational waves 
653 |a Onboard equipment 
653 |a Algorithms 
653 |a Time synchronization 
653 |a Kalman filters 
653 |a Time measurement 
700 1 |a Hartwig, Olaf 
700 1 |a Heinzel, Gerhard 
773 0 |t arXiv.org  |g (Aug 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3094925780/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.09832